11 research outputs found

    Delivery of an Ebola Virus-Positive Stillborn Infant in a Rural Community Health Center, Sierra Leone, 2015.

    Get PDF
    We report the case of an Ebola virus (EBOV) RNA-negative pregnant woman who delivered an EBOV RNA-positive stillborn infant at a community health center in rural Sierra Leone, 1 month after the mother's last possible exposure. The mother was later found to be immunoglobulins M and G positive indicating previous infection. The apparent absence of Ebola symptoms and not recognizing that the woman had previous contact with an Ebola patient led health workers performing the delivery to wear only minimal personal protection, potentially exposing them to a high risk of EBOV infection. This case emphasizes the importance of screening for epidemiological risk factors as well as classic and atypical symptoms of Ebola when caring for pregnant women, even once they have passed the typical time frame for exposure and incubation expected in nonpregnant adults. It also illustrates the need for health-care workers to use appropriate personal protection equipment when caring for pregnant women in an Ebola setting

    Successful Control of Ebola Virus Disease: Analysis of Service Based Data from Rural Sierra Leone

    No full text
    Introduction: The scale and geographical distribution of the current outbreak in West Africa raised doubts as to the effectiveness of established methods of control. Ebola Virus Disease (EVD) was first detected in Sierra Leone in May 2014 in Kailahun district. Despite high case numbers elsewhere in the country, transmission was eliminated in the district by December 2014. We describe interventions underpinning successful EVD control in Kailahun and implications for EVD control in other areas. Methods Internal service data and published reports from response agencies were analysed to describe the structure and type of response activities, EVD case numbers and epidemic characteristics. This included daily national situation reports and District-level data and reports of the Sierra Leone Ministry of Health and Sanitation, and M茅decins Sans Fronti猫res (MSF) patient data and internal epidemiological reports. We used EVD case definitions provided by the World Health Organisation over the course of the outbreak. Characteristics assessed included level of response activities and epidemiological features such as reported exposure (funeral-related or not), time interval between onset of illness and admission to the EVD Management Centre (EMC), work-related exposures (health worker or not) and mortality. We compared these characteristics between two time periods鈥擩une to July (the early period of response), and August to December (when coverage and quality of response had improved). A stochastic model was used to predict case numbers per generation with different numbers of beds and a varying percentage of community cases detected. Results There were 652 probable/confirmed EVD cases from June-December 2014 in Kailahun. An EMC providing patient care opened in June. By August 2014 an integrated detection, treatment, and prevention strategy was in place across the district catchment zone. From June-July to August-December 2014 surveillance and contact tracing staff increased from 1.0 to 8.8 per confirmed EVD case, EMC capacity increased from 32 to 100 beds, the number of burial teams doubled, and health promotion activities increased in coverage. These improvements in response were associated with the following changes between the same periods: the proportion of confirmed/probable cases admitted to the EMC increased from 35% to 83% (蠂2 p-value<0路001), the proportion of confirmed patients admitted to the EMC <3 days of symptom onset increased from 19% to 37% (蠂2 p-value <0路001), and reported funeral contact in those admitted decreased from 33% to 16% (蠂2 p-value <0路001). Mathematical modelling confirmed the importance of both patient management capacity and surveillance and contact tracing for EVD control. Discussion Our findings demonstrate that control of EVD can be achieved using established interventions based on identification and appropriate management of those who are at risk of and develop EVD, including in the context of ongoing transmission in surrounding regions. Key attributes in achieving control were sufficient patient care capacity (including admission to specialist facilities of suspect and probable cases for assessment), integrated with adequate staffing and resourcing of community-based case detection and prevention activities. The response structure and coverage targets we present are of value in informing effective control in current and future EVD outbreaks

    Successful Control of Ebola Virus Disease: Analysis of Service Based Data from Rural Sierra Leone.

    No full text
    INTRODUCTION:The scale and geographical distribution of the current outbreak in West Africa raised doubts as to the effectiveness of established methods of control. Ebola Virus Disease (EVD) was first detected in Sierra Leone in May 2014 in Kailahun district. Despite high case numbers elsewhere in the country, transmission was eliminated in the district by December 2014. We describe interventions underpinning successful EVD control in Kailahun and implications for EVD control in other areas. METHODS:Internal service data and published reports from response agencies were analysed to describe the structure and type of response activities, EVD case numbers and epidemic characteristics. This included daily national situation reports and District-level data and reports of the Sierra Leone Ministry of Health and Sanitation, and M茅decins Sans Fronti猫res (MSF) patient data and internal epidemiological reports. We used EVD case definitions provided by the World Health Organisation over the course of the outbreak. Characteristics assessed included level of response activities and epidemiological features such as reported exposure (funeral-related or not), time interval between onset of illness and admission to the EVD Management Centre (EMC), work-related exposures (health worker or not) and mortality. We compared these characteristics between two time periods--June to July (the early period of response), and August to December (when coverage and quality of response had improved). A stochastic model was used to predict case numbers per generation with different numbers of beds and a varying percentage of community cases detected. RESULTS:There were 652 probable/confirmed EVD cases from June-December 2014 in Kailahun. An EMC providing patient care opened in June. By August 2014 an integrated detection, treatment, and prevention strategy was in place across the district catchment zone. From June-July to August-December 2014 surveillance and contact tracing staff increased from 1.0 to 8.8 per confirmed EVD case, EMC capacity increased from 32 to 100 beds, the number of burial teams doubled, and health promotion activities increased in coverage. These improvements in response were associated with the following changes between the same periods: the proportion of confirmed/probable cases admitted to the EMC increased from 35% to 83% (蠂(2) p-value<0路001), the proportion of confirmed patients admitted to the EMC <3 days of symptom onset increased from 19% to 37% (蠂(2) p-value <0路001), and reported funeral contact in those admitted decreased from 33% to 16% (蠂(2) p-value <0路001). Mathematical modelling confirmed the importance of both patient management capacity and surveillance and contact tracing for EVD control. DISCUSSION:Our findings demonstrate that control of EVD can be achieved using established interventions based on identification and appropriate management of those who are at risk of and develop EVD, including in the context of ongoing transmission in surrounding regions. Key attributes in achieving control were sufficient patient care capacity (including admission to specialist facilities of suspect and probable cases for assessment), integrated with adequate staffing and resourcing of community-based case detection and prevention activities. The response structure and coverage targets we present are of value in informing effective control in current and future EVD outbreaks

    CDC Safety Training Course for Ebola Virus Disease Healthcare Workers

    Get PDF
    Response to sudden epidemic infectious disease emergencies can demand intensive and specialized training, as demonstrated in 2014 when Ebola virus disease (EVD) rapidly spread throughout West Africa. The medical community quickly became overwhelmed because of limited staff, supplies, and Ebola treatment units (ETUs). Because a mechanism to rapidly increase trained healthcare workers was needed, the US Centers for Disease Control and Prevention developed and implemented an introductory EVD safety training course to prepare US healthcare workers to work in West Africa ETUs. The goal was to teach principles and practices of safely providing patient care and was delivered through lectures, small-group breakout sessions, and practical exercises. During September 2014鈥揗arch 2015, a total of 570 participants were trained during 16 course sessions. This course quickly increased the number of clinicians who could provide care in West Africa ETUs, showing the feasibility of rapidly developing and implementing training in response to a public health emergency
    corecore