1,782 research outputs found

    Complete description of polarization effects in emission of a photon by an electron in the field of a strong laser wave

    Get PDF
    We consider emission of a photon by an electron in the field of a strong laser wave. Polarization effects in this process are important for a number of physical problems. A probability of this process for circularly or linearly polarized laser photons and for arbitrary polarization of all other particles is calculated. We obtain the complete set of functions which describe such a probability in a compact invariant form. Besides, we discuss in some detail the polarization effects in the kinematics relevant to the problem of electron to photon conversion at photon-photon and photon-electron colliders.Comment: 18 pages, minor changes, published versio

    Canceling Quadratic Divergences in a Class of Two-Higgs-Doublet Models

    Get PDF
    The Newton-Wu conditions for the cancellation of quadratic divergences in a class of two-Higgs-doublet models are analyzed as to how they may be satisfied with a typical extension of the Standard Model of particle interactions.Comment: 5 pages, no figur

    Stabilization of the Electroweak Scale in 3-3-1 Models

    Full text link
    One way of avoiding the destabilization of the electroweak scale through a strong coupled regime naturally occurs in models with a Landau-like pole at the TeV scale. Hence, the quadratic divergence contributions to the scalar masses are not considered as a problem anymore since a new nonperturbative dynamic emerges at the TeV scale. This scale should be an intrinsic feature of the models and there is no need to invoke any other sort of protection for the electroweak scale. In some models based on the SU(3)CSU(3)WU(1)XSU(3)_C\otimes SU(3)_W\otimes U(1)_{X} gauge symmetry, a nonperturbative dynamics arise and it stabilizes the electroweak scale.Comment: 10 pages. Version with some improvements and corrections in the tex

    An alternative heavy Higgs mass limit

    Full text link
    After commenting on the present value of the Higgs particle mass from radiative corrections, we explore the phenomenological implications of an alternative, non-perturbative renormalization of the scalar sector where the mass of the Higgs particle does not represent a measure of observable interactions at the Higgs mass scale. In this approach the Higgs particle could be very heavy, even heavier than 1 TeV, and remain nevertheless a relatively narrow resonance.Comment: 17 pages. Version accepted for publication in Journal of Physics

    Inelastic Channels in the Electroweak Symmetry-Breaking Sector

    Full text link
    It has been argued that if light Higgs bosons do not exist then the self--interactions of WW's become strong in the TeV region and can be observed in longitudinal WWWW scattering. We present a model with many inelastic channels in the WWWW scattering process, corresponding to the creation of heavy fermion pairs. The presence of these heavy fermions affects the elastic scattering of WW's by propagating in loops, greatly reducing the amplitudes in some charge channels. Consequently, the symmetry--breaking sector cannot be fully explored by using, for example, the W+W+W^+W^+ mode alone; all WWWWWW \rightarrow WW scattering modes must be measured.}Comment: 10 pages, phyzzx, JHU-TIPAC-92001

    Approximate gauge symmetry of composite vector bosons

    Get PDF
    It can be shown in a solvable field theory model that the couplings of the composite vector bosons made of a fermion pair approach the gauge couplings in the limit of strong binding. Although this phenomenon may appear accidental and special to the vector boson made of a fermion pair, we extend it to the case of bosons being constituents and find that the same phenomenon occurs in more an intriguing way. The functional formalism not only facilitates computation but also provides us with a better insight into the generating mechanism of approximate gauge symmetry, in particular, how the strong binding and global current conservation conspire to generate such an approximate symmetry. Remarks are made on its possible relevance or irrelevance to electroweak and higher symmetries.Comment: Correction of typos. The published versio

    Supersymmetric NLO QCD Corrections to Resonant Slepton Production and Signals at the Tevatron and the LHC

    Get PDF
    We compute the total cross section and the transverse momentum distribution for single charged slepton and sneutrino production at hadronic colliders including NLO supersymmetric and non-supersymmetric QCD corrections. The supersymmetric QCD corrections can be substantial. We also resum the gluon transverse momentum distribution and compare our results with two Monte Carlo generators. We compute branching ratios of the supersymmetric decays of the slepton and determine event rates for the like-sign dimuon final state at the Tevatron and at the LHC.Comment: 14 pages, LaTeX, 8 figures, uses REVTex

    Photon decay in a CPT-violating extension of quantum electrodynamics

    Full text link
    We consider the process of photon decay in quantum electrodynamics with a CPT-violating Chern-Simons-like term added to the action. For a simplified model with only the quadratic Maxwell and Chern-Simons-like terms and the quartic Euler-Heisenberg term, we obtain a nonvanishing probability for the decay of a particular photon state into three others.Comment: LaTeX with elsart.cls, 16 pages; v4: published versio

    Closing the SU(3)LU(1)XSU(3)_L\otimes U(1)_X Symmetry at Electroweak Scale

    Full text link
    We show that some models with SU(3)CSU(3)LU(1)XSU(3)_C\otimes SU(3)_L\otimes U(1)_X gauge symmetry can be realized at the electroweak scale and that this is a consequence of an approximate global SU(2)L+RSU(2)_{L+R} symmetry. This symmetry implies a condition among the vacuum expectation value of one of the neutral Higgs scalars, the U(1)XU(1)_X's coupling constant, gXg_X, the sine of the weak mixing angle sinθW\sin\theta_W, and the mass of the WW boson, MWM_W. In the limit in which this symmetry is valid it avoids the tree level mixing of the ZZ boson of the Standard Model with the extra ZZ^\prime boson. We have verified that the oblique TT parameter is within the allowed range indicating that the radiative corrections that induce such a mixing at the 1-loop level are small. We also show that a SU(3)L+RSU(3)_{L+R} custodial symmetry implies that in some of the models we have to include sterile (singlets of the 3-3-1 symmetry) right-handed neutrinos with Majorana masses, being the see-saw mechanism mandatory to obtain light active neutrinos. Moreover, the approximate SU(2)L+RSU(3)L+RSU(2)_{L+R}\subset SU(3)_{L+R} symmetry implies that the extra non-standard particles of these 3-3-1 models can be considerably lighter than it had been thought before so that new physics can be really just around the corner.Comment: 32 pages, no figure, RevTeX. Some typos correcte

    A screening mechanism for extra W and Z gauge bosons

    Full text link
    We generalize a previous construction of a fermiophobic model to the case of more than one extra WW and ZZ gauge bosons. We focus in particular on the existence of screening configurations and their implication on the gauge boson mass spectrum. One of these configurations allows for the existence of a set of relatively light new gauge bosons, without violation of the quite restrictive bounds coming from the ρNC\rho_{\rm NC} parameter. The links with Bess and degenerate Bess models are also discussed. Also the signal given here by this more traditional gauge extension of the SM could help to disentangle it from the towers of Kaluza-Klein states over WW and ZZ gauge bosons in extra dimensions.Comment: 23 pages, 1 figure, extended discussion on precision tests. To appear in International Journal of Modern Physics
    corecore