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A bstract
If calculated in the standard  way, the cross section for the collision of two 
unstable particles tu rns out to  diverge. This is because p art of such a 
cross section is proportional to  the size of the colliding beams. The effect 
is called the “linear beam size effect” . We present a way of including this 
linear beam size effect in the usual M onte Carlo integration procedure. 
Furtherm ore we discuss the gauge breaking th a t this may cause.

1 In troduction

The cross section for the collision of two unstable particle generally diverges.
This happens for instance in the Feynman graph

The lower half of this graph looks like the decay of a muon. Consequently the 
kinematics of the process allows the momentum k to  be on its mass shell. After 
all tha t is what one gets from the decay of a muon: a muon neutrino on its 
mass shell. The factor 1 /(k2 +  ie) th a t occurs in the matrix element causes a 
divergence of the total cross section.

In [1] and [4] this problem has been studied in detail, and it has been shown 
tha t this divergence is softened into a finite peak if the incoming particles are

vM(k) (1)
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described carefully enough. In this paper we give a prescription for including 
this peak in Monte Carlo simulations. Typically such modifications may result 
in a violation of gauge invariance in the amplitude. We study this effect in 
detail.

2 A sym p to tic  S ta te s

In the context of scalar particles, Veltman [2] has shown tha t the S-m atrix 
satisfies unitarity and causality only if one restricts the in /ou t states to  the sta
ble particles. Because of this, when considering collisions of unstable particles, 
we should use Feynman graphs th a t take the production process of the unsta
ble particle into account. We are going to show tha t we actually do not need 
to  worry about this as long as the wave packets of the unstable particles are 
much smaller in size than the decay length of the unstable particle. A complete 
amplitude for the production and collision of two muons looks like 

A= ^ 1 ƒ  + p ’2 - g i -  q2)

, /n ¿(—P2 +  m,,) ¿(Pi +  m,,) , , (2)

where

ÿpi (Pi) = dPa dPb 0Pa (Pa)^pb (Pb)(2n) S (p'a +  Pb -  P i)M prod (3)

may be viewed as the wave function of the unstable particle. Notations like 
<fiPa (p'a) stand for the wave function of a particle tha t is peaked in momentum 
space around the value p a evaluated at p'a The above expression for the wave 
function of an unstable particles assumes tha t the unstable particle is produced 
in a two-to-one process. We assume this only for the sake of simplicity of 
notations. If there are other outgoing or incoming particles their wave functions 
can easily be added. Also note the factors e-lTiPi Pi/m^ . These factors are 
translations of the wave function. The point of these translations is tha t they 
make sure th a t the unstable particles are produced away from the spot where 
they collide. The invariant distance th a t the unstable particle travels before 
colliding is Tj.

Now we are going to use the assumption th a t the wave packets are much 
smaller than the decay length. This has as a consequence th a t in momentum 
space the wave packets are much broader than the decay length. Because of 
this we may assume tha t they are constant functions of (p i)2 resp (p2)2 over a 
range of several times m Mr M. Therefore it is possible to integrate the expression 
for A  given above over the values of (p i)2 and (p2)2. We only have to integrate 
the factors contained in the quantity F  tha t is defined to be given by

l l 1 1p — e-i'r1p1’p1/m^e-iT2p2’P2/™ L
[(P2)2 -  m ,  +  im , r M] [(P i)2 -  +  im Mr M] '

(4)
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We integrate along a path parameterized as p i 2(t). This parameterization is 
done according to

p i(t)  =  p i(0) +  tc;
k '(t) =  k'(0) +  tc; (5)

p 2(t) =  p 2(0) -  tc -

If we want to integrate over the value of (p i)2 we choose c to be a four vector 
tha t is a linear combination of p1, p 2 and k such tha t it is orthogonal to the 
latter two vectors but not to p1. This parameterization is chosen such in order 
to satisfy momentum conservation and furthermore to be on a constant k2-plane 
in order not to get difficulties with the singularity at k2 = 0 .  After doing this 
integral and an analogous one over the value of (p2)2, we find the result

A =  (2n)4. / * ;  * 2  , - ^ 2 (j)

¿4(p i +  p 2 -  qi -  ?2)^P2 (p 2H (p 2)ui (p 2)M colluj (p i )uj (p i )^pi (p i ) .

This is (except for the decay factors e- r . Ti/2) exactly the same as if we had 
started with incoming muons on their mass shell. The conclusion is th a t if we 
have wave packets th a t are much smaller than the decay length of the unstable 
particles we may treat them  as if they were asymptotic states.

This has no bearing on the question of gauge invariance. M atrix elements 
depend on the masses of the particles. If masses are chosen such tha t the muon 
is no longer unstable (by assuming the electron to be heavier than the muon, so 
tha t the decay is forbidden), the m atrix element is gauge invariant, so it must 
also be if masses are chosen accordingly to their measured values.

3 T he L in ear B eam  Size Effect
We observed tha t the divergence in the cross section is caused by a peak in 
the matrix element in momentum space. A sharp peak in momentum space 
means a long range effect in position space. Indeed, the decay product of a 
decaying muon can travel over arbitrary distances. The consequence is that 
the cross section becomes proportional to the size of the beam. In colliders the 
longitudinal beam size is much larger than the transverse one. Consequently, the 
cross section is actually proportional to the transverse beam size, to be denoted 
by a. The precise definition of this quantity can be found in [1]. In the same 
paper a more rigorous version of this qualitative argument was given. In [4] it 
was shown tha t the quantities used in the rigorous argument can replaced by 
covariant ones.

The part of the cross section proportional to the beam size is given by

<7semi-sing = 0,71 [  d(TIed~---- ¡Sik2 — TO2), (7)
J  lkJ
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where a red is the cross section with the offending propagators (k2 — m 2 ±  ¿c)-1 
removed. k^ is by definition given by k +  ap i +  3p 2 with a  and 3  chosen such 
tha t k^ • p i ,2 =  0 .

The above formula gives the part of the cross section proportional to the 
beam size, but it would be more convenient if the linear beam size effect could 
be incorporated in the usual Monte Carlo integration procedure. This can indeed 
be done by doing the substitution

1 1  
— m 2 d= i t  k 2 — m 2 ±  i\k± \/a  

If we use the approximation

1 an , 2 2^
(k 2 -  to2)2 +  \k^\2/a 2 ~  ( )

these two expressions become equal. This approximation only needs to be valid 
around the peak at k2 =  m 2, which will generally be the case. The only property 
tha t is needed for this to be true is tha t the reduced cross section dared does 
not vary much in k2 at the value m 2 on momentum-squared scales of the order 
of |k^ |/a . The contribution of regions of phase space away from this peak can 
be as large or larger as the result due to the peak. In [1] the matrix element 
was split up into a part due to the peak and a part due to the rest of the phase 
space to account for this. Our i|k^ |/a-prescription gives a good approximation 
of the matrix element away from the peak at k2 =  m 2, so it makes a more or 
less arbitrary split-up of the cross section unnecesary.

3.1 G auge Invariance

The above prescription breaks gauge invariance. We study the process ^ -  +  
^  e-  +  z/e +  W  +. To do this, six Feynman graphs with 7 , W ± and Z 0 as 

fundamental bosons are needed. The propagators of the massive bosons must be 
given a width. This does affect the gauge invariance of the amplitude. In [3] it 
was shown th a t just using the iM r-prescription may lead to grossly inaccurate 
results. However, in this paper we want to focus on the effect of the gauge 
breaking caused by our i|k^  |/a-prescription. For this reason we use the pole 
scheme for the massive bosons, so th a t they do not break the gauge. W hat 
flavour of this scheme we actually used can be found in appendix A . It turns 
out tha t in the R -gauge, no gauge dependence due to the i|k^  |/a-prescription 
is found, although we actually broke gauge invariance. I.e., the results do not 
depend on the gauge param eter £. This can be understood from the Feynman 
graph displayed in equation 1. The gauge dependence comes in via a term 
proportional to (q1 +  q2)M(q1 +  q2)v tha t occurs in the W - -propagator. However, 
this term  disappears because one of these factors q1 +  q2 is to be contracted with 
the current containing the outgoing fermions. These are to be taken massless, 
so consequently this does not contribute, regardless of the gauge breaking that 
may occur at the other side of the W - -propagator. To see tha t our prescription
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actually breaks gauge invariance we used the axial gauge. In this gauge the 
undressed propagator of the W -particle is given by

-*  (guv -  w- fĉ +w^fc- +  kvk a - r n ^ )A ,, , V n-k (n-k)2 I ,

( =  k 2 -  M^r +  • (10)

The expression for the squared matrix element can be rewritten in such a way 
th a t all gauge breaking terms are proportional to |k ^ |/a  or the square of this 
quantity. The axial gauge is not very easy to work with in practice, because 
one either has propagators tha t mix longitudinal gauge bosons with would- 
be Goldstone bosons or, if propagators are diagonalized, rather complicated 
expressions for the vertices. Details are discussed in [7]. To find the gauge 
breaking terms in the unitary gauge we calculate the difference

|M |iauge -break |^M| unitary gauge -  |M |iauge invariant * (11)
The gauge invariant quantity is calculated by using the axial gauge and the 
gauge invariant prescription

Res 2 M
M g a u g e  in v a ria n t =  k 2 _  l\ k  ̂  O, +  ^

tha t gives a gauge invariant quantity in the spirit of the pole scheme. This 
calculation was done in the axial gauge to check tha t we actually get a quan
tity  tha t does not depend on the gauge vector n. The algebra was done us
ing the C + +  computer algebra library GiNaC. C.f., [8]. We find tha t the 
quantity |M |^auge-break is, compared to the rest of the cross section, a fac
tor |fcj_|/(as) ~  1/(cja/s) smaller. Numerically tha t is a factor 7 • 10~ 14 for 
a/s =  150GeV and a = a/7t • 10¡im (which is a reasonable value). In ref [3] it 
was shown tha t gauge breaking effects can get enhanced by a factor as large 
as s/m ;2, but even if this would happen, the gauge breaking due to our handling 
of the linear beam size effect remains negligible (note tha t in the context of 
muon colliders one would actually expect a factor s /m 2 for the case discussed 
in [3]) .

4 C onclusions
The linear beam size effect can be incorporated in the usual Monte Carlo inte
gration procedure by doing to substitution

1 1
k 2 — to2 ±  ie k 2 — to2 ±  i\k±  |/a   ̂ ^

in the propagator tha t causes the divergence. This can be done in a gauge 
invariant way, but in the unitary gauge the gauge breaking effect is so small 
th a t it is safe not to worry about the gauge dependence. The gauge breaking 
effect of the iM r-prescription is much larger than tha t due to the i|k^ |/a .

A cknow ledgem ent: We would like to thank prof. P. van Nieuwenhuizen for 
bringing the problem of gauge dependence to our attention.
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A  T he Pole Schem e
To describe resonances, as observed from the W and Z  particles, one needs a 
resummed propagator tha t contains a factor (p2 — M 2 +  iM r ) - 1 . The prob
lem with this propagator is th a t it breaks gauge invariance, which means tha t 
observable quantities depend on the gauge choice. The pole scheme (c.f., [5] 
and [6]) is one of the ways to solve this. To use it, we first observe tha t both 
the position of the pole and its residue are gauge invariant quantities. They 
must be because they can be determined by experiment. The consequence is 
th a t every m atrix element tha t involves such a pole can be written as

A, _  F(p2 =  M2 -  »Mr) F(p2) -  F(p2 =  M2 -  »Mr) , A,
P2- M 2 +  *Mr P2- M 2 +  *Mr rest’ 1 )

where the first term  is gauge invariant, as are the second and third together.
In practice things are a bit more involved than sketched in the previous 

paragraph. A matrix element generally depends on more tha t just p 2 and thus 
a prescription is needed to tell us what happens to all the other quantities that 
occur in the m atrix element if we put p 2 equal to M 2 — iM r . We follow the 
method outlined in [5]. Our matrix element contains strings of gamma matrices 
with spinors at the beginning and end. These are canonicalized to ensure that 
all strings of gamma matrices are linearly independent. This means th a t if we 
have, say, a p and a /  in some string of gamma matrices, we can also have the 
same string of gamma matrices with the p and /  interchanged. We then have 
to  decide which of these two comes in front. The anti-commutation relations 
th a t one has for gamma matrices are then used to do this. Also the relations 
pu(p) =  mu(p) and pv(p) =  —mv(p) are used whenever applicable.

After this has been done, the strings of gamma matrices tha t remain are 
linearly independent. They are said to form a set of independent covariants. 
If the m atrix element is going to be gauge invariant, each coefficient of such a 
string of gamma matrices must separately be gauge invariant. So equation 14 
is not used for the full matrix element but actually for the invariant coefficient 
th a t occur in front of the different products of strings of gamma matrices. In 
order to do this, it is also necessary to eliminate one of the outgoing/incoming 
momenta by using momentum conservation for the entire matrix element. All 
inner products between in- or outgoing momenta in the m atrix element are 
expressed in a smallest complete set of lorentz invariant variables. In the case 
of the outgoing momenta shown in the graph in equation 1 the set consisting of

s =  (p1 +  p2)2; 

t =  (p1 — q1 — q2)2;
X =  (q1 +  q2)2; (15)

y =  (p 1 +  p 2 — q2)2; 

z =  (p1 — 91)2,

can be chosen. If one uses tha t the squares of incoming and outgoing momenta
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are given by the appropriate masses squared, all inner products between mo
menta are determined by specifying the variables (s ,t ,x ,y , z). Now setting the 
square of some internal momentum in some Feynman graph equal to some value 
is a well-defined operation, except for some caveats th a t we discuss next.
The caveats are
1. If we have outgoing or incoming vector bosons, we should also treat inner 

products of the form p-e with e the polarization vector as linearly independent 
covariant quantities. Some elements in the set of independent covariants 
contain a factor p • e. In the case of the axial gauge this set furthermore 
includes factors tha t are inner products with the gauge vector n.

2. In the unitary gauge, the inner product of a polarization vector with the mo
mentum of the particle to which the polarization vector belongs is zero. For 
this reason, these inner products should not appear in the set of independent 
covariants, nor in the coefficients tha t multiply them. The same applies to 
the inner product of polarization vectors with the gauge vector n  in the axial 
gauge.

3. In the axial gauge the property holds tha t if we have outgoing or incoming 
vector bosons the m atrix element becomes zero if the polarization vector of a 
vector boson is replaced by its momentum. It is a feature of the axial gauge 
tha t this not only happens for massless gauge bosons but also for massive 
ones. This shows tha t the set of covariants tha t we had is not really linearly 
independent. To see how this can be solved consider a matrix element of the 
form

M  =  e • p 1^1 +  e • p 2^2 +  e • p3F3* (16)

Here the inner products e • p* are the covariants and the F* are the invariant 
functions. If we know tha t the relation

q • p 1F  +  q • p 2F2 +  q • p3F3 =  0 (17)

holds, we can eliminate F 1 from the m atrix element. We get

M  = f e - p 2 - e  - p i*1 F2 + ( e - p a -  e ■ p ^  P3 ĵ F3. (18)
V q • p 1/  V q • p ! /

Thus we have actually reduced the set of covariants from three to two in this 
example. This boils down to doing the substitution

e ^ e  — e ■ p i —-— . (19)
q • p 1

In this substitution the vector p 1 can be chosen to be any linear combination 
of incoming and outgoing momenta. It is advisable to choose one tha t does 
not yield any singularities in the physical phase space due to dividing by q •p1. 
In the unitary gauge a similar reduction can be carried out. In our calculation 
we chose to get (q1 +  q2) • q3 in the denominator. This is equal to s — x — M ^ . 
This quantity has no poles in the physical phase space.
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4. One has to be careful about the set of invariant variables. Actually the 
set (s, t, x, y, z) has a problem. To see this, consider the Feynman graph

The internal electron propagator is given by

S =  (21)
S ~ X ~ y  + Myy

In the pole scheme we should determine the residue for the Z-pole. This 
means th a t we put s =  M§ to lowest order. The maximum value of x +  y 
is s and occurs in the limit tha t the outgoing electron is produced at rest. 
We see tha t the quantity 1/(s — x — y +  M ^ ) does not have a pole in the 
physical phase space but if we put s =  MZ2 it does develop a pole. For 
this reason we did not use the set of parameters (s, t, x, y, z) but instead the 
set (s, t, £, n, z) where £ =  x /s  and n =  y /s . This set causes no trouble with 
spurious singularities.

The problem with spurious singularities, tha t we encountered in item 3 and 4 
can be looked upon as follows. Formula 14 tells us to split the invariant functions 
in the m atrix element. However, we have some freedom in making this split- 
up. This makes it possible tha t the pole term  has a singularity tha t is then 
canceled by the regular term. A sensible choice of such a split-up takes care not 
to introduce new singularities in the physical phase space.
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