18 research outputs found

    Using internal strain and mass to modulate Dy⋯Dy coupling and relaxation of magnetization in heterobimetallic metallofullerenes DyM2N@C80 and Dy2MN@C80 (M = Sc, Y, La, Lu)

    Get PDF
    Endohedral clusters inside metallofullerenes experience considerable inner strain when the size of the hosting cage is comparably small. This strain can be tuned in mixed-metal metallofullerenes by combining metals of different sizes. Here we demonstrate that the internal strain and mass can be used as variables to control Dy⋯Dy coupling and relaxation of magnetization in Dy-metallofullerenes. Mixed-metal nitride clusterfullerenes DyxY3−xN@Ih-C80 (x = 0-3) and Dy2LaN@Ih-C80 combining Dy with diamagnetic rare-earth elements, Y and La, were synthesized and characterized by single-crystal X-ray diffraction, SQUID magnetometry, ab initio calculations, and spectroscopic techniques. DyxY3−xN clusters showed a planar structure, but the slightly larger size of Dy3+ in comparison with that of Y3+ resulted in increased elongation of the nitrogen thermal ellipsoid, showing enhancement of the out-of-plane vibrational amplitude. When Dy was combined with larger La, the Dy2LaN cluster appeared strongly pyramidal with the distance between two nitrogen sites of 1.15(1) Å, whereas DyLa2N@C80 could not be obtained in a separable yield. Magnetic studies revealed that the relaxation of magnetization and blocking temperature of magnetization in the DyM2N@C80 series (M = Sc, Y, Lu) correlated with the mass of M, with DySc2N@C80 showing the fastest and DyLu2N@C80 the slowest relaxation. Ab initio calculations predicted very similar g-tensors for Dy3+ ground state pseudospin in all studied DyM2N@C80 molecules, suggesting that the variation in relaxation is caused by different vibrational spectra of these compounds. In the Dy2MN@C80 series (M = Sc, Y, La, Lu), the magnetic and hysteretic behavior was found to correlate with Dy⋯Dy coupling, which in turn appears to depend on the size of M3+. Across the Dy2MN@C80 series, the energy difference between ferromagnetic and antiferromagnetic states changes from 5.6 cm−1 in Dy2ScN@C80 to 3.0 cm−1 in Dy2LuN@C80, 1.0 cm−1 in Dy2YN@C80, and −0.8 cm−1 in Dy2LaN@C80. The coupling of Dy ions suppresses the zero-field quantum tunnelling of magnetization but opens new relaxation channels, making the relaxation rate dependent on the coupling strengths. DyY2N@C80 and Dy2YN@C80 were found to be non-luminescent, while the luminescence reported for DyY2N@C80 was caused by traces of Y3N@C80 and Y2ScN@C8

    Magnetic studies on lanthanide-based endohedral metallofullerenes

    Get PDF
    ​My PhD thesis is an in-depth study of the magnetic properties of a series of different lanthanide-based endohedral metallofullerenes. They are sphere-like shape carbon molecules (fullerenes) with embedded magnetic lanthanide elements inside, suitable for spintronic and high dense-data storage applications. In this work, I studied two families of endohedral metallofullerenes (di-lanthanides and Dy-oxides) which showed great versatility in the magnetic behavior, depending on the type of the encapsulated cluster, and the size and shape of the carbon cage.:Magnetic studies on lanthanide dimetallofullerenes Gd2@C80(CH2Ph) and Gd2@C79N Tb2@C80(CH2Ph) and Tb2@C79N TbY@C80(CH2Ph) Ho2@C80(CH2Ph) Er2@C80(CH2Ph) Magnetic studies on Dy-oxide clusterfullerenes Dy2O@C72 Dy2O@C74 Dy2O@C82 (three isomers

    Magnetic studies on lanthanide-based endohedral metallofullerenes

    No full text
    ​My PhD thesis is an in-depth study of the magnetic properties of a series of different lanthanide-based endohedral metallofullerenes. They are sphere-like shape carbon molecules (fullerenes) with embedded magnetic lanthanide elements inside, suitable for spintronic and high dense-data storage applications. In this work, I studied two families of endohedral metallofullerenes (di-lanthanides and Dy-oxides) which showed great versatility in the magnetic behavior, depending on the type of the encapsulated cluster, and the size and shape of the carbon cage.:Magnetic studies on lanthanide dimetallofullerenes Gd2@C80(CH2Ph) and Gd2@C79N Tb2@C80(CH2Ph) and Tb2@C79N TbY@C80(CH2Ph) Ho2@C80(CH2Ph) Er2@C80(CH2Ph) Magnetic studies on Dy-oxide clusterfullerenes Dy2O@C72 Dy2O@C74 Dy2O@C82 (three isomers

    Magnetic hysteresis and strong ferromagnetic coupling of sulfur-bridged Dy ions in clusterfullerene Dy2S@C-82

    Get PDF
    © the Partner Organisations. Two isomers of metallofullerene Dy2S@C-82 with sulfur-bridged Dy ions exhibit broad magnetic hysteresis with sharp steps at sub-Kelvin temperature. Analysis of the level crossing events for different orientations of a magnetic field showed that even in powder samples, the hysteresis steps caused by quantum tunneling of magnetization can provide precise information on the strength of intramolecular Dy center dot center dot center dot Dy interactions. A comparison of different methods to determine the energy difference between ferromagnetic and antiferromagnetic states showed that sub-Kelvin hysteresis gives the most robust and reliable values. The ground state in Dy2S@C-82 has ferromagnetic coupling of Dy magnetic moments, whereas the state with antiferromagnetic coupling in C-s and C-3v cage isomers is 10.7 and 5.1 cm(-1) higher, respectively. The value for the C-s isomer is among the highest found in metallofullerenes and is considerably larger than that reported in non-fullerene dinuclear molecular magnets. Magnetization relaxation times measured in zero magnetic field at sub-Kelvin temperatures tend to level off near 900 and 3200 s in C-s and C-3v isomers. These times correspond to the quantum tunneling relaxation mechanism, in which the whole magnetic moment of the Dy2S@C-82 molecule flips at once as a single entity11sciescopu
    corecore