44 research outputs found
Recommended from our members
A MicroRNA Based Genetic Clock
This thesis focuses on the design, construction and stable integration in mammalian cells of a natural microRNA-based genetic oscillator. This will help both in better understanding the rules underlying the periodic expression of genes observed in major biological processes, such as the circadian clock and cell-cycle, as well as, in generating new tools to probe and investigate the function of a gene in a cell, by allowing not only its over-expression or knock-down, but also its cyclic expression. The circuit involves a positive feedback loop, consisting of a transcription factor (TF) activating itself, and a negative feedback loop, using a natural micro RNA controlled by the TF, which induces degradation of the TF itself. The circuit was built in a modular way, and implemented it in two lentiviral vectors able to infect both dividing and non-dividing cells, hence suitable for many different applications. Since obtaining stable oscillations is non-trivial, a modified version of the oscillator was engineered, including an intermediate step between the TF and the microRNA, to increase the delay in the negative feedback loop. The oscillatory behavior was tested via in vivo time-lapse fluorescence microscopy in both versions of the oscillator, since both the TF(s) and the microRNA are expressed together with fluorescent reporters.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Engineered Cell-Based Therapeutics: Synthetic Biology Meets Immunology
Synthetic Biology has enabled new approaches to several medical applications including the development of immunotherapies based on bioengineered cells, and most notably the engineering of T-cells with tumor-targeting receptors, the Chimeric Antigen Receptor (CAR)-T cells. CAR-T-cells have successfully treated blood tumors such as large B-cell lymphoma and promise a new scenario of therapeutic interventions also for solid tumors. Learning the lesson from CAR-T cells, we can foster the reprogramming of T lymphocytes with enhanced survival and functional activity in depressing tumor microenvironment, or to challenge diseases such as infections, autoimmune and chronic inflammatory disorders. This review will focus on the most updated bioengineering approaches to increase control, and safety of T-cell activity and to immunomodulate the extracellular microenvironment to augment immune responses. We will also discuss on applications beyond cancer treatment with implications toward the understanding and cure of a broader range of diseases by means of mammalian cells engineering
Comparison of Multiple Maximum and Minimum Temperature Datasets at Local Level: The Case Study of North Horr Sub-County, Kenya
Climate analyses at a local scale are an essential tool in the field of sustainable development. The evolution of reanalysis datasets and their greater reliability contribute to overcoming the scarcity of observed data in the southern areas of the world. The purpose of this study is to compute the reference monthly values and ranges of maximum and minimum temperatures for the eight main inhabited villages of North Horr Sub-County, in northern Kenya. The official ten-day dataset derived from the Kenyan Meteorological Department (KMD), the monthly datasets derived from the ERA-Interim reanalysis (ERA), the Observational-Reanalysis Hybrid (ORH) and the Climate Limited Area Mode driven by HadG-EM2-ES (HAD) are assessed on a local scale using the most common statistical indices to determine which is more reliable in representing monthly maximum and minimum temperatures. Overall, ORH datasets showed lower biases and errors in representing local temperatures. Through an innovative methodology, a new set of monthly mean temperature values and ranges derived from ORH datasets are calculated for each location in the study area, in order to guarantee to locals an historical benchmark to compare present observations. The findings of this research provide insights for environmental risk management, supporting local populations in reducing their vulnerability
Systematic Transfer of Prokaryotic Sensors and Circuits to Mammalian Cells
Prokaryotic regulatory proteins respond to diverse signals and represent a rich resource for building synthetic sensors and circuits. The TetR family contains >10[superscript 5] members that use a simple mechanism to respond to stimuli and bind distinct DNA operators. We present a platform that enables the transfer of these regulators to mammalian cells, which is demonstrated using human embryonic kidney (HEK293) and Chinese hamster ovary (CHO) cells. The repressors are modified to include nuclear localization signals (NLS) and responsive promoters are built by incorporating multiple operators. Activators are also constructed by modifying the protein to include a VP16 domain. Together, this approach yields 15 new regulators that demonstrate 19- to 551-fold induction and retain both the low levels of crosstalk in DNA binding specificity observed between the parent regulators in Escherichia coli, as well as their dynamic range of activity. By taking advantage of the DAPG small molecule sensing mediated by the PhlF repressor, we introduce a new inducible system with 50-fold induction and a threshold of 0.9 ÎĽM DAPG, which is comparable to the classic Dox-induced TetR system. A set of NOT gates is constructed from the new repressors and their response function quantified. Finally, the Dox- and DAPG- inducible systems and two new activators are used to build a synthetic enhancer (fuzzy AND gate), requiring the coordination of 5 transcription factors organized into two layers. This work introduces a generic approach for the development of mammalian genetic sensors and circuits to populate a toolbox that can be applied to diverse applications from biomanufacturing to living therapeutics.United States. Defense Advanced Research Projects Agency (DARPA-BAA-11-23)National Institutes of Health (U.S.) (P50GM098792)Life Technologies, Inc. (Research Contract A114510)United States. Office of Naval Research. Multidisciplinary University Research Initiative (N00014-13-1-0074)National Institute of General Medical Sciences (U.S.) (Award R01 GM095765
Recommended from our members
Resource-aware construct design in mammalian cells
Resource competition can be the cause of unintended coupling between co-expressed genetic constructs. Here we report the quantification of the resource load imposed by different mammalian genetic components and identify construct designs with increased performance and reduced resource footprint. We use these to generate improved synthetic circuits and optimise the co-expression of transfected cassettes, shedding light on how this can be useful for bioproduction and biotherapeutic applications. This work provides the scientific community with a framework to consider resource demand when designing mammalian constructs to achieve robust and optimised gene expression
Mitigating losses: how scientific organisations can help address the impact of the COVID-19 pandemic on early-career researchers.
Scientific collaborations among nations to address common problems and to build international partnerships as part of science diplomacy is a well-established notion. The international flow of people and ideas has played an important role in the advancement of the 'Sciences' and the current pandemic scenario has drawn attention towards the genuine need for a stronger role of science diplomacy, science advice and science communication. In dealing with the COVID-19 pandemic, visible interactions across science, policy, science communication to the public and diplomacy worldwide have promptly emerged. These interactions have benefited primarily the disciplines of knowledge that are directly informing the pandemic response, while other scientific fields have been relegated. The effects of the COVID-19 pandemic on scientists of all disciplines and from all world regions are discussed here, with a focus on early-career researchers (ECRs), as a vulnerable population in the research system. Young academies and ECR-driven organisations could suggest ECR-powered solutions and actions that could have the potential to mitigate these effects on ECRs working on disciplines not related to the pandemic response. In relation with governments and other scientific organisations, they can have an impact on strengthening and creating fairer scientific systems for ECRs at the national, regional, and global level
Construction and Modelling of an Inducible Positive Feedback Loop Stably Integrated in a Mammalian Cell-Line
Understanding the relationship between topology and dynamics of transcriptional regulatory networks in mammalian cells is essential to elucidate the biology of complex regulatory and signaling pathways. Here, we characterised, via a synthetic biology approach, a transcriptional positive feedback loop (PFL) by generating a clonal population of mammalian cells (CHO) carrying a stable integration of the construct. The PFL network consists of the Tetracycline-controlled transactivator (tTA), whose expression is regulated by a tTA responsive promoter (CMV-TET), thus giving rise to a positive feedback. The same CMV-TET promoter drives also the expression of a destabilised yellow fluorescent protein (d2EYFP), thus the dynamic behaviour can be followed by time-lapse microscopy. The PFL network was compared to an engineered version of the network lacking the positive feedback loop (NOPFL), by expressing the tTA mRNA from a constitutive promoter. Doxycycline was used to repress tTA activation (switch off), and the resulting changes in fluorescence intensity for both the PFL and NOPFL networks were followed for up to 43 h. We observed a striking difference in the dynamics of the PFL and NOPFL networks. Using non-linear dynamical models, able to recapitulate experimental observations, we demonstrated a link between network topology and network dynamics. Namely, transcriptional positive autoregulation can significantly slow down the “switch off” times, as comparared to the nonautoregulatated system. Doxycycline concentration can modulate the response times of the PFL, whereas the NOPFL always switches off with the same dynamics. Moreover, the PFL can exhibit bistability for a range of Doxycycline concentrations. Since the PFL motif is often found in naturally occurring transcriptional and signaling pathways, we believe our work can be instrumental to characterise their behaviour
Improvement of ALT decay kinetics by all-oral HCV treatment: Role of NS5A inhibitors and differences with IFN-based regimens
Background: Intracellular HCV-RNA reduction is a proposed mechanism of action of direct-acting antivirals (DAAs), alternative to hepatocytes elimination by pegylated-interferon plus ribavirin (PR). We modeled ALT and HCV-RNA kinetics in cirrhotic patients treated with currently-used all-DAA combinations to evaluate their mode of action and cytotoxicity compared with telaprevir (TVR)+PR. Study design: Mathematical modeling of ALT and HCV-RNA kinetics was performed in 111 HCV-1 cirrhotic patients, 81 treated with all-DAA regimens and 30 with TVR+PR. Kinetic-models and Cox-analysis were used to assess determinants of ALT-decay and normalization. Results: HCV-RNA kinetics was biphasic, reflecting a mean effectiveness in blocking viral production >99.8%. The first-phase of viral-decline was faster in patients receiving NS5A-inhibitors compared to TVR+PR or sofosbuvir+simeprevir (p<0.001), reflecting higher efficacy in blocking assembly/secretion. The second-phase, noted \u3b4 and attributed to infected-cell loss, was faster in patients receiving TVR+PR or sofosbuvir+simeprevir compared to NS5A-inhibitors (0.27 vs 0.21 d-1, respectively, p = 0.0012). In contrast the rate of ALT-normalization, noted \u3bb, was slower in patients receiving TVR+PR or sofosbuvir+simeprevir compared to NS5A-inhibitors (0.17 vs 0.27 d-1, respectively, p<0.001). There was no significant association between the second-phase of viral-decline and ALT normalization rate and, for a given level of viral reduction, ALT-normalization was more profound in patients receiving DAA, and NS5A in particular, than TVR+PR. Conclusions: Our data support a process of HCV-clearance by all-DAA regimens potentiated by NS5A-inhibitor, and less relying upon hepatocyte death than IFN-containing regimens. This may underline a process of "cell-cure" by DAAs, leading to a fast improvement of liver homeostasis
Engineering protein-protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells
The development of RNA-encoded regulatory circuits relying on RNA-binding proteins (RBPs) has enhanced the applicability and prospects of post-transcriptional synthetic network for reprogramming cellular functions. However, the construction of RNA-encoded multilayer networks is still limited by the availability of composable and orthogonal regulatory devices. Here, we report on control of mRNA translation with newly engineered RBPs regulated by viral proteases in mammalian cells. By combining post-transcriptional and post-translational control, we expand the operational landscape of RNA-encoded genetic circuits with a set of regulatory devices including: i) RBP-protease, ii) protease-RBP, iii) protease–protease, iv) protein sensor protease-RBP, and v) miRNA-protease/RBP interactions. The rational design of protease-regulated proteins provides a diverse toolbox for synthetic circuit regulation that enhances multi-input information processing-actuation of cellular responses. Our approach enables design of artificial circuits that can reprogram cellular function with potential benefits as research tools and for future in vivo therapeutics and biotechnological applications.NIH (P50-GM098792