1,695 research outputs found

    Extending canonical Monte Carlo methods II

    Full text link
    Previously, we have presented a methodology to extend canonical Monte Carlo methods inspired on a suitable extension of the canonical fluctuation relation C=ÎČ2C=\beta^{2} compatible with negative heat capacities C<0C<0. Now, we improve this methodology by introducing a better treatment of finite size effects affecting the precision of a direct determination of the microcanonical caloric curve ÎČ(E)=∂S(E)/∂E\beta (E) =\partial S(E) /\partial E, as well as a better implementation of MC schemes. We shall show that despite the modifications considered, the extended canonical MC methods possibility an impressive overcome of the so-called \textit{super-critical slowing down} observed close to the region of a temperature driven first-order phase transition. In this case, the dependence of the decorrelation time τ\tau with the system size NN is reduced from an exponential growth to a weak power-law behavior τ(N)∝Nα\tau(N)\propto N^{\alpha}, which is shown in the particular case of the 2D seven-state Potts model where the exponent α=0.14−0.18\alpha=0.14-0.18.Comment: Version submitted to JSTA

    Equilibrium fluctuation theorems compatible with anomalous response

    Full text link
    Previously, we have derived a generalization of the canonical fluctuation relation between heat capacity and energy fluctuations C=ÎČ2<ÎŽU2>C=\beta^{2}<\delta U^{2}>, which is able to describe the existence of macrostates with negative heat capacities C<0C<0. In this work, we extend our previous results for an equilibrium situation with several control parameters to account for the existence of states with anomalous values in other response functions. Our analysis leads to the derivation of three different equilibrium fluctuation theorems: the \textit{fundamental and the complementary fluctuation theorems}, which represent the generalization of two fluctuation identities already obtained in previous works, and the \textit{associated fluctuation theorem}, a result that has no counterpart in the framework of Boltzmann-Gibbs distributions. These results are applied to study the anomalous susceptibility of a ferromagnetic system, in particular, the case of 2D Ising model.Comment: Extended version of the paper published in JSTA

    Geometrical aspects and connections of the energy-temperature fluctuation relation

    Full text link
    Recently, we have derived a generalization of the known canonical fluctuation relation kBC=ÎČ2k_{B}C=\beta^{2} between heat capacity CC and energy fluctuations, which can account for the existence of macrostates with negative heat capacities C<0C<0. In this work, we presented a panoramic overview of direct implications and connections of this fluctuation theorem with other developments of statistical mechanics, such as the extension of canonical Monte Carlo methods, the geometric formulations of fluctuation theory and the relevance of a geometric extension of the Gibbs canonical ensemble that has been recently proposed in the literature.Comment: Version accepted for publication in J. Phys. A: Math and The

    Asymmetric supernova remnants generated by Galactic, massive runaway stars

    Full text link
    After the death of a runaway massive star, its supernova shock wave interacts with the bow shocks produced by its defunct progenitor, and may lose energy, momentum, and its spherical symmetry before expanding into the local interstellar medium (ISM). We investigate whether the initial mass and space velocity of these progenitors can be associated with asymmetric supernova remnants. We run hydrodynamical models of supernovae exploding in the pre-shaped medium of moving Galactic core-collapse progenitors. We find that bow shocks that accumulate more than about 1.5 Mo generate asymmetric remnants. The shock wave first collides with these bow shocks 160-750 yr after the supernova, and the collision lasts until 830-4900 yr. The shock wave is then located 1.35-5 pc from the center of the explosion, and it expands freely into the ISM, whereas in the opposite direction it is channelled into the region of undisturbed wind material. This applies to an initially 20 Mo progenitor moving with velocity 20 km/s and to our initially 40 Mo progenitor. These remnants generate mixing of ISM gas, stellar wind and supernova ejecta that is particularly important upstream from the center of the explosion. Their lightcurves are dominated by emission from optically-thin cooling and by X-ray emission of the shocked ISM gas. We find that these remnants are likely to be observed in the [OIII] lambda 5007 spectral line emission or in the soft energy-band of X-rays. Finally, we discuss our results in the context of observed Galactic supernova remnants such as 3C391 and the Cygnus Loop.Comment: 21 pages, 16 figure

    Thermodynamic fluctuation relation for temperature and energy

    Full text link
    The present work extends the well-known thermodynamic relation C=ÎČ2<ÎŽE2>C=\beta ^{2}< \delta {E^{2}}> for the canonical ensemble. We start from the general situation of the thermodynamic equilibrium between a large but finite system of interest and a generalized thermostat, which we define in the course of the paper. The resulting identity =1+<ÎŽE2>∂2S(E)/∂E2 =1+< \delta {E^{2}}% > \partial ^{2}S(E) /\partial {E^{2}} can account for thermodynamic states with a negative heat capacity C<0C<0; at the same time, it represents a thermodynamic fluctuation relation that imposes some restrictions on the determination of the microcanonical caloric curve ÎČ(E)=∂S(E)/∂E\beta (E) =\partial S(E) /\partial E. Finally, we comment briefly on the implications of the present result for the development of new Monte Carlo methods and an apparent analogy with quantum mechanics.Comment: Version accepted for publication in J. Phys. A: Math and The

    Cosmic Ray Acceleration at the Forward Shock in Tycho's Supernova Remnant: Evidence from Chandra X-ray Observations

    Get PDF
    We present evidence for cosmic ray acceleration at the forward shock in Tycho's supernova remnant (SNR) from three X-ray observables: (1) the proximity of the contact discontinuity to the forward shock, or blast wave, (2) the morphology of the emission from the rim of Tycho, and (3) the spectral nature of the rim emission. We determine the locations of the blast wave (BW), contact discontinuity (CD), and reverse shock (RS) around the rim of Tycho's supernova remnant using a principal component analysis and other methods applied to new Chandra data. The azimuthal-angle-averaged radius of the BW is 251". For the CD and RS we find average radii of 241" and 183", respectively. Taking account of projection effects, we find ratios of 1:0.93:0.70 (BW:CD:RS). We show these values to be inconsistent with adiabatic hydrodynamical models of SNR evolution. The CD:BW ratio can be explained if cosmic ray acceleration of ions is occurring at the forward shock. The RS:BW ratio, as well as the strong Fe Ka emission from the Tycho ejecta, imply that the RS is not accelerating cosmic rays. We also extract radial profiles from ~34% of the rim of Tycho and compare them to models of surface brightness profiles behind the BW for a purely thermal plasma with an adiabatic shock. The observed morphology of the rim is much more strongly peaked than predicted by the model, indicating that such thermal emission is implausible here. Spectral analysis also implies that the rim emission is non-thermal in nature, lending further support to the idea that Tycho's forward shock is accelerating cosmic rays.Comment: 39 pages, 10 figures, accepted by Ap

    On the plerionic rectangular supernova remnants of static progenitors

    Full text link
    Pulsar wind nebulae are a possible final stage of the circumstellar evolution of massive stars, where a fast rotating, magnetised neutron star produces a powerful wind that interacts with the supernova ejecta. The shape of these so called plerionic supernova remnants is influenced by the distribution of circumstellar matter at the time of the explosion, itself impacted by the magnetic field of the ambient medium responsible for the expansion of the circumstellar bubble of the progenitor star. To understand the effects of magnetization on the circumstellar medium and resulting pulsar nebulae, we conduct 2D magnetohydrodynamical simulations. Our models explore the impact of the interstellar medium magnetic field on the morphology of a supernova remnant and pulsar wind nebula that develop in the circumstellar medium of massive star progenitor in the warm phase of the Milky Ways interstellar medium. Our simulations reveal that the jet like structures formed on both sides perpendicularly to the equatorial plane of the pulsar, creating complex radio synthetic synchrotron emissions. This morphology is characterized by a rectangular like remnant, which is typical of the circumstellar medium of massive stars in a magnetized medium, along with the appearance of a spinning top structure within the projected rectangle. We suggest that this mechanism may be partially responsible for the complex morphologies observed in pulsar wind nebulae that do not conform to the typical torus, jet or bow shock, tail shapes observed in most cases.Comment: Accepted at MNRA

    Effect of chloride passivation on recombination dynamics in CdTe colloidal quantum dots

    Get PDF
    Colloidal quantum dots (CQDs) can be used in conjunction with organic charge‐transporting layers to produce light‐emitting diodes, solar cells and other devices. The efficacy of CQDs in these applications is reduced by the non‐radiative recombination associated with surface traps. Here we investigate the effect on the recombination dynamics in CdTe CQDs of the passivation of these surface traps by chloride ions. Radiative recombination dominates in these passivated CQDs, with the radiative lifetime scaling linearly with CQD volume over τr=20–55 ns. Before chloride passivation or after exposure to air, two non‐radiative components are also observed in the recombination transients, with sample‐dependent lifetimes typically of less than 1 ns and a few ns. The non‐radiative dynamics can be explained by Auger‐mediated trapping of holes and the lifetimes of this process calculated by an atomistic model are in agreement with experimental values if assuming surface oxidation of the CQDs

    Structure-function mapping of a heptameric module in the nuclear pore complex.

    Get PDF
    The nuclear pore complex (NPC) is a multiprotein assembly that serves as the sole mediator of nucleocytoplasmic exchange in eukaryotic cells. In this paper, we use an integrative approach to determine the structure of an essential component of the yeast NPC, the ~600-kD heptameric Nup84 complex, to a precision of ~1.5 nm. The configuration of the subunit structures was determined by satisfaction of spatial restraints derived from a diverse set of negative-stain electron microscopy and protein domain-mapping data. Phenotypic data were mapped onto the complex, allowing us to identify regions that stabilize the NPC's interaction with the nuclear envelope membrane and connect the complex to the rest of the NPC. Our data allow us to suggest how the Nup84 complex is assembled into the NPC and propose a scenario for the evolution of the Nup84 complex through a series of gene duplication and loss events. This work demonstrates that integrative approaches based on low-resolution data of sufficient quality can generate functionally informative structures at intermediate resolution
    • 

    corecore