32 research outputs found

    Expression of genes encoding extracellular matrix macromolecules and metalloproteinases in avian tibial dyschondroplasia

    Get PDF
    Avian tibial dyschondroplasia (TD) is a skeletal disease characterized by disruption of endochondral bone formation. The aim of this study was to determine the expression of extracellular matrix (ECM) macromolecules and ECM-degrading enzymes [matrix metalloproteinases (MMPs)] in the growth plates of normal and TD-affected 3-week-old broiler chicks (Cobb strain). Protein levels were analyzed by immunoblotting and gelatin zymography and gene expression by polymerase chain reaction. Expression of genes encoding the ECM macromolecules (collagen types II, IX, X and XI; and aggrecan) was not altered in dyschondroplasia; however, there was down-regulation of genes encoding MMP-9, MMP-13, MMP-10 and MMP-11 in addition to reduced amounts of MMP-2 and MMP-13 proteins. In contrast, there was up-regulation of genes encoding MMP-7 and the vascular endothelial growth factor. These findings suggest that the accumulation of cartilage associated with the disease may be the result of decreased proteolysis due to the down-regulation of MMPs and not to an increased production of ECM macromolecules

    Tolerogenic versus Inflammatory Activity of Peripheral Blood Monocytes and Dendritic Cells Subpopulations in Systemic Lupus Erythematosus

    Get PDF
    Abnormalities in monocytes and in peripheral blood dendritic cells (DC) subsets have been reported in systemic lupus erythematosus (SLE). We aim to clarify the tolerogenic or inflammatory role of these cells based on ICOSL or IFN-α and chemokine mRNA expression, respectively, after cell purification. The study included 18 SLE patients with active disease (ASLE), 25 with inactive disease (ISLE), and 30 healthy controls (HG). In purified plasmacytoid DC (pDC) was observed a lower ICOSL mRNA expression in ASLE and an increase in ISLE; similarly, a lower ICOSL mRNA expression in monocytes of ALSE patients was found. However, a higher ICOSL mRNA expression was observed in ASLE compared to HG in myeloid DCs. Interestingly, clinical parameters seem to be related with ICOSL mRNA expression. Regarding the inflammatory activity it was observed in purified monocytes and CD14(-/low) CD16(+) DCs an increase of CCL2, CXCL9, and CXCL10 mRNA expression in ASLE compared to HG. In myeloid DC no differences were observed regarding chemokines, and IFN-α mRNA expression. In pDC, a higher IFN-α mRNA expression was observed in ASLE. Deviations in ICOSL, chemokine, and IFN-α mRNA expression in peripheral blood monocytes and dendritic cells subpopulations in SLE appear to be related to disease activity

    Swelling kinetics of poly(acrylamide)/poly(mono-n-alkyl itaconates) hydrogels

    No full text
    Hydrogels of mono-n-alkyl itaconate/N-acrylamide have been synthesised. The swelling process at three different pH values (acid, neutral and basic) has been studied. The experimental data indicate that our hydrogels follow second-order swelling kinetics. According to this, the kinetic constant, K?, and the swelling capacity at equilibrium, W?, have been calculated. The influence of the solvent pH and the molar mass of the mono-n-alkyl itaconate monomeric unit has been analysed. It seems that the general balance between the hydrogen bonding and the hydrophobic interactions regulates the swelling process of these hydrogels. © 1996 SCI

    Adaptive Reprogramming During Early Seed Germination Requires Temporarily Enhanced Fermentation-A Critical Role for Alternative Oxidase Regulation That Concerns Also Microbiota Effectiveness

    Get PDF
    Plants respond to environmental cues via adaptive cell reprogramming that can affect whole plant and ecosystem functionality. Microbiota constitutes part of the inner and outer environment of the plant. This Umwelt underlies steady dynamics, due to complex local and global biotic and abiotic changes. Hence, adaptive plant holobiont responses are crucial for continuous metabolic adjustment at the systems level. Plants require oxygen-dependent respiration for energy-dependent adaptive morphology, such as germination, root and shoot growth, and formation of adventitious, clonal, and reproductive organs, fruits, and seeds. Fermentative paths can help in acclimation and, to our view, the role of alternative oxidase (AOX) in coordinating complex metabolic and physiological adjustments is underestimated. Cellular levels of sucrose are an important sensor of environmental stress. We explored the role of exogenous sucrose and its interplay with AOX during early seed germination. We found that sucrose-dependent initiation of fermentation during the first 12 h after imbibition (HAI) was beneficial to germination. However, parallel upregulated AOX expression was essential to control negative effects by prolonged sucrose treatment. Early downregulated AOX activity until 12 HAI improved germination efficiency in the absence of sucrose but suppressed early germination in its presence. The results also suggest that seeds inoculated with arbuscular mycorrhizal fungi (AMF) can buffer sucrose stress during germination to restore normal respiration more efficiently. Following this approach, we propose a simple method to identify organic seeds and low-cost on-farm perspectives for early identifying disease tolerance, predicting plant holobiont behavior, and improving germination. Furthermore, the research strengthens the view that AOX can serve as a powerful functional marker source for seed hologenomes.</jats:p

    From Plant Survival Under Severe Stress to Anti-Viral Human Defense – A Perspective That Calls for Common Efforts

    Get PDF
    Reprogramming of primary virus-infected cells is the critical step that turns viral attacks harmful to humans by initiating super-spreading at cell, organism and population levels. To develop early anti-viral therapies and proactive administration, it is important to understand the very first steps of this process. Plant somatic embryogenesis (SE) is the earliest and most studied model for de novo programming upon severe stress that, in contrast to virus attacks, promotes individual cell and organism survival. We argued that transcript level profiles of target genes established from in vitro SE induction as reference compared to virus-induced profiles can identify differential virus traits that link to harmful reprogramming. To validate this hypothesis, we selected a standard set of genes named ‘ReprogVirus’. This approach was recently applied and published. It resulted in identifying ‘CoV-MAC-TED’, a complex trait that is promising to support combating SARS-CoV-2-induced cell reprogramming in primary infected nose and mouth cells. In this perspective, we aim to explain the rationale of our scientific approach. We are highlighting relevant background knowledge on SE, emphasize the role of alternative oxidase in plant reprogramming and resilience as a learning tool for designing human virus-defense strategies and, present the list of selected genes. As an outlook, we announce wider data collection in a ‘ReprogVirus Platform’ to support anti-viral strategy design through common efforts

    Implementation of an ergonomics intervention in a Swedish flight baggage handling company—A process evaluation

    No full text
    © 2018 Bergsten et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Objective To conduct a process evaluation of the implementation of an ergonomics training program aimed at increasing the use of loading assist devices in flight baggage handling. Methods Feasibility related to the process items recruitment, reach, context, dose delivered (training time and content); dose received (participants’ engagement); satisfaction with training; intermediate outcomes (skills, confidence and behaviors); and barriers and facilitators of the training intervention were assessed by qualitative and quantitative methods. Results Implementation proved successful regarding dose delivered, dose received and satisfaction. Confidence among participants in the training program in using and talking about devices, observed use of devices among colleagues, and internal feedback on work behavior increased significantly (p&lt;0.01). Main facilitators were self-efficacy, motivation, and perceived utility of training among the trainees. Barriers included lack of peer support, opportunities to observe and practice behaviors, and follow-up activities; as well as staff reduction and job insecurity. Conclusions In identifying important barriers and facilitators for a successful outcome, this study can help supporting the effectiveness of future interventions. Our results suggest that barriers caused by organizational changes may likely be alleviated by recruiting motivated trainees and securing strong organizational support for the implementation
    corecore