81 research outputs found

    α-Galactosylceramide and peptide-based nano-vaccine synergistically induced a strong tumor suppressive effect in melanoma

    Get PDF
    α-Galactosylceramide (GalCer) is a glycolipid widely known as an activator of Natural killer T (NKT) cells, constituting a promising adjuvant against cancer, including melanoma. However, limited clinical outcomes have been obtained so far. This study evaluated the synergy between GalCer and major histocompatibility complex (MHC) class I and MHC class II melanoma-associated peptide antigens and the Toll-Like Receptor (TLR) ligands CpG and monophosphoryl lipid A (MPLA), which we intended to maximize following their co-delivery by a nanoparticle (NP). This is expected to improve GalCer capture by dendritic cells (DCs) and subsequent presentation to NKT cells, and simultaneously induce an anti-tumor specific T-cell mediated immunity. The combination of GalCer with melanoma peptides and TLR ligands successfully restrained tumor growth. The tumor volume in these animals was 5-fold lower than the ones presented by mice immunized with NPs not containing GalCer. However, tumor growth was controlled at similar levels by GalCer entrapped or in its soluble form, when mixed with antigens and TLR ligands. Those two groups showed an improved infiltration of T lymphocytes into the tumor, but only GalCer-loaded nano-vaccine induced a prominent and enhanced infiltration of NKT and NK cells. In addition, splenocytes of these animals secreted levels of IFN-γ and IL-4 at least 1.5-fold and 2-fold higher, respectively, than those treated with the mixture of antigens and adjuvants in solution. Overall, the combined delivery of the NKT agonist with TLR ligands and melanoma antigens via this multivalent nano-vaccine displayed a synergistic anti-tumor immune-mediated efficacy in B16F10 melanoma mouse model. STATEMENT OF SIGNIFICANCE: Combination of α-galactosylceramide (GalCer), a Natural Killer T (NKT) cell agonist, with melanoma-associated antigens presented by MHC class I (Melan-A:26) and MHC class II (gp100:44) molecules, and Toll-like Receptor (TLR) ligands (MPLA and CpG), within nanoparticle matrix induced a prominent anti-tumor immune response able to restrict melanoma growth. An enhanced infiltration of NKT and NK cells into tumor site was only achieved when the combination GalCer, antigens and TLR ligands were co-delivered by nanovaccine

    Infective endocarditis with Lactococcus garvieae in Japan: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p><it>Lactococcus garvieae </it>is a well-recognized fish pathogen, and it is considered a rare pathogen with low virulence in human infection. We describe the 11th case of <it>L. garvieae </it>infective endocarditis reported in the literature, and the first reported case in Japan.</p> <p>Case presentation</p> <p>We report a case of a 55-year-old Japanese woman who had native valve endocarditis with <it>L. garvieae</it>. The case was complicated by renal infarction, cerebral infarction, and mycotic aneurysms. After anti-microbial treatment, she was discharged from the hospital and is now well while being monitored in the out-patient clinic.</p> <p>Conclusion</p> <p>We encountered a case of <it>L. garvieae </it>endocarditis that occurred in a native valve of a healthy woman. The 16S ribosomal RNA gene sequencing was useful for the identification of this pathogen. Although infective endocarditis with <it>L. garvieae </it>is uncommon, it is possible to treat high virulence clinically.</p

    Additional records of metazoan parasites from Caribbean marine mammals, including genetically identified anisakid nematodes

    Get PDF
    Studies of marine mammal parasites in the Caribbean are scarce. An assessment for marine mammal endo- and ectoparasites from Puerto Rico and the Virgin Islands, but extending to other areas of the Caribbean, was conducted between 1989 and 1994. The present study complements the latter and enhances identification of anisakid nematodes using molecular markers. Parasites were collected from 59 carcasses of stranded cetaceans and manatees from 1994 to 2006, including Globicephala macrorhynchus, Kogia breviceps, Kogia sima, Lagenodelphis hosei, Mesoplodon densirostris, Peponocephala electra, Stenella longirostris, Steno bredanensis, Trichechus manatus. Tursiops truncatus, and Ziphius cavirostris. Sixteen species of endoparasitic helminthes were morphologically identified, including two species of acanthocephalans (Bolbosoma capitatum, Bolbosoma vasculosum), nine species of nematodes (Anisakis sp., Anisakis brevispiculata, Anisakis paggiae, Anisakis simplex, Anisakis typica, Anisakis ziphidarium, Crassicauda anthonyi, Heterocheilus tunicatus, Pseudoterranova ceticola), two species of cestodes (Monorygma grimaldi, Phyllobothrium delphini), and three species of trematodes (Chiorchis groschafti, Pulmonicola cochleotrema, Monoligerum blairi). The nematodes belonging to the genus Anisakis recovered in some stranded animals were genetically identified to species level based on their sequence analysis of mitochondrial DNA (629 bp of mtDNA cox 2). A total of five new host records and six new geographic records are presented.L'articolo è disponibile sul sito dell'editore http://www.springerlink.com

    A distinct bacterial dysbiosis associated skin inflammation in ovine footrot

    Get PDF
    Ovine footrot is a highly prevalent bacterial disease caused by Dichelobacter nodosus and characterised by the separation of the hoof horn from the underlying skin. The role of innate immune molecules and other bacterial communities in the development of footrot lesions remains unclear. This study shows a significant association between the high expression of IL1β and high D. nodosus load in footrot samples. Investigation of the microbial population identified distinct bacterial populations in the different disease stages and also depending on the level of inflammation. Treponema (34%), Mycoplasma (29%) and Porphyromonas (15%) were the most abundant genera associated with high levels of inflammation in footrot. In contrast, Acinetobacter (25%), Corynebacteria (17%) and Flavobacterium (17%) were the most abundant genera associated with high levels of inflammation in healthy feet. This demonstrates for the first time there is a distinct microbial community associated with footrot and high cytokine expression

    NOXA-Induced Alterations in the Bax/Smac Axis Enhance Sensitivity of Ovarian Cancer Cells to Cisplatin

    Get PDF
    Ovarian cancer is the most common cause of death from gynecologic malignancy. Deregulation of p53 and/or p73-associated apoptotic pathways contribute to the platinum-based resistance in ovarian cancer. NOXA, a pro-apoptotic BH3-only protein, is identified as a transcription target of p53 and/or p73. In this study, we found that genetic variants of Bcl-2 proteins exist among cisplatin-sensitive and -resistant ovarian cancer cells, and the responses of NOXA and Bax to cisplatin are regulated mainly by p53. We further evaluated the effect of NOXA on cisplatin. NOXA induced apoptosis and sensitized A2780s and SKOV3 cells to cisplatin in vitro and in vivo. The effects were mediated by elevated Bax expression, enhanced caspase activation, release of Cyt C and Smac into the cytosol. Furthermore, gene silencing of Bax or Smac significantly attenuated NOXA and/or cisplatin-induced apoptosis in chemosensitive A2780s cells, whereas overexpression of Bax or addition of Smac-N7 peptide significantly increased NOXA and/or cisplatin-induced apoptosis in chemoresistant SKOV3 cells. To our knowledge, these data suggest a new mechanism by which NOXA chemosensitized ovarian cancer cells to cisplatin by inducing alterations in the Bax/Smac axis. Taken together, our findings show that NOXA is potentially useful as a chemosensitizer in ovarian cancer therapy

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore