35 research outputs found
Can Arbuscular Mycorrhizal Fungi Reduce the Growth of Agricultural Weeds?
BACKGROUND: Arbuscular mycorrhizal fungi (AMF) are known for their beneficial effects on plants. However, there is increasing evidence that some ruderal plants, including several agricultural weeds, respond negatively to AMF colonization. Here, we investigated the effect of AMF on the growth of individual weed species and on weed-crop interactions. METHODOLOGY/PRINCIPAL FINDINGS: First, under controlled glasshouse conditions, we screened growth responses of nine weed species and three crops to a widespread AMF, Glomus intraradices. None of the weeds screened showed a significant positive mycorrhizal growth response and four weed species were significantly reduced by the AMF (growth responses between -22 and -35%). In a subsequent experiment, we selected three of the negatively responding weed species--Echinochloa crus-galli, Setaria viridis and Solanum nigrum--and analyzed their responses to a combination of three AMF (Glomus intraradices, Glomus mosseae and Glomus claroideum). Finally, we tested whether the presence of a crop (maize) enhanced the suppressive effect of AMF on weeds. We found that the growth of the three selected weed species was also reduced by a combination of AMF and that the presence of maize amplified the negative effect of AMF on the growth of E. crus-galli. CONCLUSIONS/SIGNIFICANCE: Our results show that AMF can negatively influence the growth of some weed species indicating that AMF have the potential to act as determinants of weed community structure. Furthermore, mycorrhizal weed growth reductions can be amplified in the presence of a crop. Previous studies have shown that AMF provide a number of beneficial ecosystem services. Taken together with our current results, the maintenance and promotion of AMF activity may thereby contribute to sustainable management of agroecosystems. However, in order to further the practical and ecological relevance of our findings, additional experiments should be performed under field conditions
Barrier Tissue Macrophages: Functional Adaptation to Environmental Challenges
Macrophages are found throughout the body, where they have crucial roles in tissue development, homeostasis and remodeling, as well as being sentinels of the innate immune system that can contribute to protective immunity and inflammation. Barrier tissues, such as the intestine, lung, skin and liver, are exposed constantly to the outside world, which places special demands on resident cell populations such as macrophages. Here we review the mounting evidence that although macrophages in different barrier tissues may be derived from distinct progenitors, their highly specific properties are shaped by the local environment, which allows them to adapt precisely to the needs of their anatomical niche. We discuss the properties of macrophages in steady-state barrier tissues, outline the factors that shape their differentiation and behavior and describe how macrophages change during protective immunity and inflammation
Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter
Autotransporter proteins are defined by the ability to drive their own secretion across the bacterial outer membrane. The Hia autotransporter of Haemophilus influenzae belongs to the trimeric autotransporter subfamily and mediates bacterial adhesion to the respiratory epithelium. In this report, we present the crystal structure of the C-terminal end of Hia, corresponding to the entire Hia translocator domain and part of the passenger domain (residues 992–1098). This domain forms a β-barrel with 12 transmembrane β-strands, including four strands from each subunit. The β-barrel has a central channel of 1.8 nm in diameter that is traversed by three N-terminal α-helices, one from each subunit. Mutagenesis studies demonstrate that the transmembrane portion of the three α-helices and the loop region between the α-helices and the neighboring β-strands are essential for stability of the trimeric structure of the translocator domain, and that trimerization of the translocator domain is a prerequisite for translocator activity. Overall, this study provides important insights into the mechanism of translocation in trimeric autotransporters
Comparison between Winkler's extractor and pitfall traps to estimate leaf litter ants richness (Formicidae) at a rainforest site in southest Brazil
The aim of this study was to compare in the same site the efficiency of the two most used techniques for sampling ant diversity, Winkler's extractors and pitfalls. We studied communities of leaf litter ants from the Brazilian Atlantic Forest, compared richness estimates for genera and species, and built species accumulation curves. These two methods resulted in a satisfactory sampling of richness; 21.3% of the genera and 47.6% of the species were collected exclusively with Winkler's extractors, whereas 6.4% of the genera and 9.5% of the species were collected exclusively with pitfalls. Winkler's extractor had proven to be the most efficient single sampling technique to estimate richness. However, pitfalls also recorded a significant portion of the total richness. Despite differences in efficiency, species accumulation curves for both techniques were similar, as well as the curve obtained with both methods combined. We noticed that Winkler's extractors were c. 74.0% more efficient than pitfalls in the Atlantic Forest. Therefore, sampling techniques must be used with a well-structured sampling design in order to advance knowledge on the ant fauna of Brazilian biomes, especially in the leaf litter, allowing more complete environmental analyses
Genetic and environmental components of variation in eumelanin and phaeomelanin sex-traits in the barn owl
Knowledge of the mechanism underlying the expression of melanin-based sex-traits may help us to understand their signalling function. Potential sources of inter-individual variation are the total amount of melanins produced but also how biochemical precursors are allocated into the eumelanin and phaeomelanin pigments responsible for black and reddish-brown colours, respectively. In the barn owl (Tyto alba), a eumelanin trait (referred to as ‘plumage spottiness’) signals immunocompetence towards an artificially administrated antigen and parasite resistance in females, whereas a phaeomelanin trait (‘plumage coloration’) signals investment in reproduction in males. This raises the question whether plumage coloration and spottiness are expressed independent of each other. To investigate this question, we have studied the genetics of these two plumage traits. Crossfostering experiments showed that, for each trait, phenotypic variation has a strong genetic component, whereas no environmental component could be detected. Plumage coloration is autosomally inherited, as suggested by the similar paternal-to-maternal contribution to offspring coloration. In contrast, plumage spottiness may be sex-linked inherited (in birds, females are heterogametic). That proposition arises from the observation that sons resembled their mother more than their father and that daughters resembled only their father. Despite plumage coloration and spottiness signalling different qualities, these two traits are not inherited independent of each other, darker birds being spottier. This suggests that the extent to which coloration and spottiness are expressed depends on the total amount of melanin produced (with more melanin leading to a both darker and spottier plumage) rather than on differential allocation of melanin into plumage coloration and spottiness (in such a case, darker birds should have been less spotted). A gene controlling the production of melanin pigments may be located on sex-chromosomes, since the phenotypic correlation between coloration and spottiness was stronger in males than in females.
The translocation domain in trimeric autotransporter adhesins is necessary and sufficient for trimerization and autotransportation
Trimeric autotransporter adhesins (TAAs) comprise one of the secretion pathways of the type V secretion system. The mechanism of their translocation across the outer membrane remains unclear, but it most probably occurs by the formation of a hairpin inside the β-barrel translocation unit, leading to transportation of the passenger domain from the C terminus to the N terminus through the lumen of the β-barrel. We further investigated the phenomenon of autotransportation and the rules that govern it. We showed by coexpressing different Escherichia coli immunoglobulin-binding (Eib) proteins that highly similar TAAs could form stochastically mixed structures (heterotrimers). We further investigated this phenomenon by coexpressing two more distantly related TAAs, EibA and YadA. These, however, did not form heterotrimers; indeed, coexpression was lethal to the cells, leading to elimination of one or another of the genes. However, substituting in either protein the barrel of the other one so that the barrels were identical led to formation of heterotrimers as for Eibs. Our work shows that trimerization of the β-barrel, but not the passenger domain, is necessary and sufficient for TAA secretion while the passenger domain is not