45 research outputs found

    Efeitos da nutrição mineral sobre o crescimento, aspecto, composição elementar e fixação de nitrogênio em Azolla

    Get PDF
    The mineral nutrition of Azolla feliculoides Lam was studied in solutions deficient in phosphorus, potassium, calcium, magnesium, sulfur, iron and molybdenum, and in excess of Mn and Al. Dry weight, N2 fixation and mineral composition of Azolla were determined after 3 weeks. Phosphorus, potassium, calcium and magnesium deficiencies and excess of manganese and aluminium decressed growth severely and also depressed the activity of nitrogenase. Phosphorus deficiency improved the uptake of iron and zinc. Potassium deficiency increased the levels of phosphorus in dry matter. Magnesium deficiency caused lower uptake of K and better uptake of Ca, Fe and Mn. Sulfur deficiency reduced aluminium uptake and promoted the best growth. Positive correlations were found between: N content and dry matter, nitrogenase activity and N content.Azolla filiculoides Lam foi cultivado em solução nutritiva arejada, sempre desprovida de N combinado, sendo submetida aos seguintes tratamentos: omissão de P, K, Ca, Mg, S, Fe e Mo, excesso de Mn e Al. As plantas foram colhidas depois de 3 semanas da inoculação. Verificou-se que as deficiências de P, K, Ca e Mg provocaram diminuição na produção de matéria seca e na atividade de nitrogenase. A análise mineral mostrou que: a falta de um elemento provoca redução no seu teor; grande acumulo de Mo; diminuição no teor de Al (do inóculo ou contaminação) no tratamento menos S que garantiu o maior crescimento; efeitos inibitórios ou sinergísticos semelhantes aos descritos no caso de plantas superiores. A toxidez de Al e Mn causou, principalmente a primeira, redução no crescimento e na atividade da nitrogenase. Houve correlações positivas entre: N total e crescimento, atividade de nitrogenase e N total

    Antibodies against endogenous retroviruses promote lung cancer immunotherapy

    Get PDF
    B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response

    Deposition Of Organicinorganic Hybrid Coatings Over 316l Surgical Stainless Steel And Evaluation On Vascular Cells

    No full text
    Surface coating of metallic materials using the sol-gel technique is a suitable approach to obtain hybrid materials with improved properties for biomedical applications. In this study, an AISI 316L stainless steel surface was coated with ormosils prepared from tetraethylsiloxane and 3-glycidoxypropyltrimethoxysilane or polydimethylsiloxane. The characterization of structural and surface properties was performed by several techniques. Surface microstructure, morphology, and energy are dependent on organosilane type and content. Chemical stability of coatings was investigated by static immersion tests in phosphate buffer solution at 37 °C, and silicon leaching after 21 days was found to be in the range of 200300 μg L-1. Mechanical adhesion was found to be within 1.0 and 3.7 N cm-1. The interaction of the samples and materials in the cardiovascular environment was investigated through cellular behavior. Biological assays were performed with slides to avoid any cytotoxic effects on human endothelial cells (HUVEC) and rabbit arterial smooth muscle cells (RASM). No significant alterations were observed after 24 h in the viability of RASM and HUVEC cells exposed to different coatings. No increase of HUVEC or RASM migration was observed after 24 h as evaluated by transwell migration assay. The hybrid materials showed suitable properties for potential application as biomaterials in cardiovascular environment as well as for incorporation of bioactive species with the aim to prepare drug-eluting stents.9210987995Hanawa, T., (2012) Sci. Technol. Adv. Mater., 13, p. 064102Vallet-Regi, M., Colilla, M., Gonzalez, B., (2011) Chem. Soc. Rev., 40, p. 596Chiriac, A.P., Neamtu, I., Nita, L.E., Nistor, M.T., (2010) Mini-Rev. Med. Chem., 10, p. 990Lendlein, A., Behl, M., Hiebl, B., Wischke, C., (2010) Exp. Rev. Med. Dev., 7, p. 357Marrey, R.V., Burgermeister, R., Grishaber, R.B., Ritchie, R.O., (2006) Biomaterials, 27, p. 1988Anderson, J.M., (2001) Annu. Rev. Mat. Res., 31, p. 81O'Brien, B., Carroll, W., (2009) Acta Biomater., 5, p. 945Thierry, B., Tabrizian, M., (2003) J. Endovasc. Ther., 10, p. 807. , 2.0.CO;2Chaabane, C., Otsuka, F., Virmani, R., Bochaton-Piallat, M.L., (2013) Cardiovasc. Res., 99, p. 353Kraitzer, A., Kloog, Y., Zilberman, M., (2008) J. Biomed. Mater. Res., Part B, 85 B, p. 583Khan, W., Farah, S., Domb, A.J., (2012) J. Controlled Release, 161, p. 703Puranik, A.S., Dawson, E.R., Peppas, N.A., (2013) Int. J. Pharm., 441, p. 665Thipparaboina, R., Khan, W., Domb, A.J., (2013) Int. J. Pharm., 454, p. 4Gad, S.C., (2013) Standards and Methods for Assessing the Safety and Biocompatibility of Biomaterials, p. 285. , Jaffe, M. Hammond, W. Tolias, P. Arinzeh, T. Eds. Woodhead Publishing: Sawston, UKFarhatnia, Y., Tan, A., Motiwala, A., Cousins, B.G., Seifalian, A.M., (2013) Biotechnol. Adv., 31, p. 524Galli, C., Coen, M.C., Hauert, R., Katanaev, V.L., Groning, P., Schlapbach, L., (2002) Colloids Surf. B, 26, p. 255Jacobs, T., Morent, R., De Geyter, N., Dubruel, P., Leys, C., (2012) Plasma Chem. Plasma Process., 32, p. 1039Castner, D.G., Ratner, B.D., (2002) Surf. Sci., 500, p. 28Jones, C.F., Grainger, D.W., (2009) Adv. Drug Delivery Rev., 61, p. 438Brodbeck, W.G., Shive, M.S., Colton, E., Nakayama, Y., Matsuda, T., Anderson, J.M., (2001) J. Biomed. Mater. Res., 55, p. 661. , 43.0.CO;2-FCiriminna, R., Fidalgo, A., Pandarus, V., Beland, F., Ilharco, L.M., Pagliaro, M., (2013) Chem. Rev., 113, p. 6592Hench, L.L., West, J.K., (1990) Chem. Rev., 90, p. 33Hay, J.N., Raval, H.M., (2001) Chem. Mater., 13, p. 3396Galliano, P., De Damborenea, J.J., Pascual, M.J., Duran, A., (1998) J. Sol-Gel Sci. Technol., 13, p. 723Gallardo, J., Duran, A., De Damborenea, J.J., (2004) Corros. Sci., 46, p. 795Guglielmi, M., (1997) J. Sol-Gel Sci. Technol., 8, p. 443Wang, D., Bierwagen, G.R., (2009) Prog. Org. Coat., 64, p. 327Metroke, T.L., Parkhill, R.L., Knobbe, E.T., (2001) Prog. Org. Coat., 41, p. 233Galvan, J.C., Saldana, L., Multigner, M., Calzado-Martin, A., Larrea, M., Serra, C., Vilaboa, N., Gonzalez-Carrasco, J.L., (2012) J. Mater. Sci.: Mater. Med., 23, p. 657Wen, J.Y., Wilkes, G.L., (1996) Chem. Mater., 8, p. 1667Avnir, D., Coradin, T., Lev, O., Livage, J., (2006) J. Mater. Chem., 16, p. 1013Coradin, T., Boissiere, M., Livage, J., (2006) Curr. Med. Chem., 13, p. 99Gupta, R., Kumar, A., (2008) Biomed. Mater., 3, p. 034005Bottcher, H., Slowik, P., Suss, W., (1998) J. Sol-Gel Sci. Technol., 13, p. 277Asefa, T., Tao, Z.M., (2012) Can. J. Chem., 90 (12), p. 1015Tsuru, K., Hayakawa, S., Osaka, A., (2004) J. Sol-Gel Sci. Technol., 32, p. 201Hetrick, E.M., Schoenfisch, M.H., (2006) Chem. Soc. Rev., 35, p. 780Tfouni, E., Truzzi, D.R., Tavares, A., Gomes, A.J., Figueiredo, L.E., Franco, D.W., (2012) Nitric Oxide, 26, p. 38Tfouni, E., Doro, F.G., Gomes, A.J., Da Silva, R.S., Metzker, G., Benini, P.G.Z., Franco, D.W., (2010) Coord. Chem. Rev., 254, p. 355Brinker, C.J., (1988) J. Non-Cryst. Solids, 100, p. 31Owens, D.K., Wendt, R.C., (1969) J. Appl. Polym. Sci., 13, p. 1741(2007) Standard Test Methods for 707 Peel Strength of Adhesive Bonds, , Designation D-1000American Society for Testing and Materials, West Conchohoken, PABuonassisi, V., Venter, J.C., (1976) Proc. Natl. Acad. Sci. U.S.A., 73, p. 1612Janiszewski, M., Lopes, L.R., Carmo, A.O., Pedro, M.A., Brandes, R.P., Santos, C.X.C., Laurindo, F.R.M., (2005) J. Biol. Chem., 280, p. 40813Mosmann, T., (1983) J. Immunol. Methods, 65, p. 55Morshed, M.M., McNamara, B.P., Cameron, D.C., Hashmi, M.S.J., (2003) Surf. Coat. Technol., 163, p. 541Joung, Y.K., Kim, H.I., Kim, S.S., Chung, K.H., Jang, Y.S., Park, K.D., (2003) J. Controlled Release, 92, p. 83Meth, S., Sukenik, C.N., (2003) Thin Solid Films, 425, p. 49Metroke, T.L., Kachurina, O., Knobbe, E.T., (2002) Prog. Org. Coat., 44, p. 295Yabuta, T., Tsuru, K., Hayakawa, S., Osaka, A., (2004) J. Sol-Gel Sci. Technol., 31, p. 273Richards, R.E., Thompson, H.W., (1949) J. Chem. Soc., p. 124Chazalviel, J.N., Rodrigues, U.P., (2012) Thin Solid Films, 520, p. 3918Velasco, M.J., Rubio, J., Oteo, J.L., (2001) Bol. Soc. Esp. Ceram. Vidrio, 40, p. 37Innocenzi, P., Brusatin, G., Guglielmi, M., Bertani, R., (1999) Chem. Mater., 11, p. 1672Yim, H., Kent, M.S., Tallant, D.R., Garcia, M.J., Majewski, J., (2005) Langmuir, 21, p. 4382Peeters, M.P.J., Wakelkamp, W.J.J., Kentgens, A.P.M., (1995) J. Non-Cryst. Solids, 189, p. 77Harris, R.K., Kennedy, J.D., McFarlane, W., (1978) NMR and the Periodic Table, , Academic Press: London, UKEngelhardt, G., Michel, D., (1987) High-Resolution Solid-State NMR of Silicates and Zeolites, , John Wiley & Sons: Chichester, UKKomori, Y., Nakashima, H., Hayashi, S., Sugahara, Y., (2005) J. Non-Cryst. Solids, 351, p. 97Templin, M., Wiesner, U., Spiess, H.W., (1997) Adv. Mater., 9, p. 814Uilk, J., Bullock, S., Johnston, E., Myers, S.A., Merwin, L., Wynne, K.J., (2000) Macromolecules, 33, p. 8791Fitton, J.H., Dalton, B.A., Beumer, G., Johnson, G., Griesser, H.J., Steele, J.G., (1998) J. Biomed. Mater. Res., 42, p. 245. , 23.3.CO;2-2Lee, J.N., Jiang, X., Ryan, D., Whitesides, G.M., (2004) Langmuir, 20, p. 11684Yildirim, A., Budunoglu, H., Deniz, H., Guler, M.O., Bayindir, M., (2010) Appl. Mater. Interfaces, 2, p. 2892Zhang, G., Fu, N., Zhang, H., Wang, J.Y., Hou, X.L., Yang, B., Shen, J.C., Jiang, L., (2003) Langmuir, 19, p. 2434Steele, J.G., Johnson, G., McLean, K.M., Beumer, G.J., Griesser, H.J., (2000) J. Biomed. Mater. Res., 50, p. 475. , 43.0.CO;2-GCeyhan, T., Tatlier, M., Akcakaya, H., (2007) J. Mater. Sci.: Mater. Med., 18, p. 1557Dave, B.C., Hu, X.K., Devaraj, Y., Dhali, S.K., (2004) J. Sol-Gel Sci. Technol., 32, p. 143Veranth, J.M., In Vitro Models for Nanoparticle Toxicology (2008) Nanoscience and Nanotechnology: Environmental and Health Impacts, p. 261. , Grassian, V. H. Eds. John Wiley & Sons: Hoboken, NJLiu, X., Sun, J.A., (2010) Biomaterials, 31, p. 8198Ma, Z.W., Mao, Z.W., Gao, C.Y., (2007) Colloids Surf. B, 60, p. 13
    corecore