8,556 research outputs found

    Impurity in a granular gas under nonlinear Couette flow

    Full text link
    We study in this work the transport properties of an impurity immersed in a granular gas under stationary nonlinear Couette flow. The starting point is a kinetic model for low-density granular mixtures recently proposed by the authors [Vega Reyes F et al. 2007 Phys. Rev. E 75 061306]. Two routes have been considered. First, a hydrodynamic or normal solution is found by exploiting a formal mapping between the kinetic equations for the gas particles and for the impurity. We show that the transport properties of the impurity are characterized by the ratio between the temperatures of the impurity and gas particles and by five generalized transport coefficients: three related to the momentum flux (a nonlinear shear viscosity and two normal stress differences) and two related to the heat flux (a nonlinear thermal conductivity and a cross coefficient measuring a component of the heat flux orthogonal to the thermal gradient). Second, by means of a Monte Carlo simulation method we numerically solve the kinetic equations and show that our hydrodynamic solution is valid in the bulk of the fluid when realistic boundary conditions are used. Furthermore, the hydrodynamic solution applies to arbitrarily (inside the continuum regime) large values of the shear rate, of the inelasticity, and of the rest of parameters of the system. Preliminary simulation results of the true Boltzmann description show the reliability of the nonlinear hydrodynamic solution of the kinetic model. This shows again the validity of a hydrodynamic description for granular flows, even under extreme conditions, beyond the Navier-Stokes domain.Comment: 23 pages, 11 figures; v2: Preliminary DSMC results from the Boltzmann equation included, Fig. 11 is ne

    Computer simulations of an impurity in a granular gas under planar Couette flow

    Full text link
    We present in this work results from numerical solutions, obtained by means of the direct simulation Monte Carlo (DSMC) method, of the Boltzmann and Boltzmann--Lorentz equations for an impurity immersed in a granular gas under planar Couette flow. The DSMC results are compared with the exact solution of a recent kinetic model for the same problem. The results confirm that, in steady states and over a wide range of parameter values, the state of the impurity is enslaved to that of the host gas: it follows the same flow velocity profile, its concentration (relative to that of the granular gas) is constant in the bulk region, and the impurity/gas temperature ratio is also constant. We determine also the rheological properties and nonlinear hydrodynamic transport coefficients for the impurity, finding a good semi-quantitative agreement between the DSMC results and the theoretical predictions.Comment: 23 pages, 11 figures; v2: minor change

    A method for solve integrable A2A_2 spin chains combining different representations

    Get PDF
    A non homogeneous spin chain in the representations {3} \{3 \} and {3} \{3^*\} of A2A_2 is analyzed. We find that the naive nested Bethe ansatz is not applicable to this case. A method inspired in the nested Bethe ansatz, that can be applied to more general cases, is developed for that chain. The solution for the eigenvalues of the trace of the monodromy matrix is given as two coupled Bethe equations different from that for a homogeneous chain. A conjecture about the form of the solutions for more general chains is presented. PACS: 75.10.Jm, 05.50+q 02.20 SvComment: PlainTeX, harvmac, 13 pages, 3 figures, to appear in Phys. Rev.

    Granular mixtures modeled as elastic hard spheres subject to a drag force

    Full text link
    Granular gaseous mixtures under rapid flow conditions are usually modeled by a multicomponent system of smooth inelastic hard spheres with constant coefficients of normal restitution. In the low density regime an adequate framework is provided by the set of coupled inelastic Boltzmann equations. Due to the intricacy of the inelastic Boltzmann collision operator, in this paper we propose a simpler model of elastic hard spheres subject to the action of an effective drag force, which mimics the effect of dissipation present in the original granular gas. The Navier--Stokes transport coefficients for a binary mixture are obtained from the model by application of the Chapman--Enskog method. The three coefficients associated with the mass flux are the same as those obtained from the inelastic Boltzmann equation, while the remaining four transport coefficients show a general good agreement, especially in the case of the thermal conductivity. Finally, the approximate decomposition of the inelastic Boltzmann collision operator is exploited to construct a model kinetic equation for granular mixtures as a direct extension of a known kinetic model for elastic collisions.Comment: The title has been changed, 4 figures, and to be published in Phys. Rev.

    An exact solution of the inelastic Boltzmann equation for the Couette flow with uniform heat flux

    Full text link
    In the steady Couette flow of a granular gas the sign of the heat flux gradient is governed by the competition between viscous heating and inelastic cooling. We show from the Boltzmann equation for inelastic Maxwell particles that a special class of states exists where the viscous heating and the inelastic cooling exactly compensate each other at every point, resulting in a uniform heat flux. In this state the (reduced) shear rate is enslaved to the coefficient of restitution α\alpha, so that the only free parameter is the (reduced) thermal gradient ϵ\epsilon. It turns out that the reduced moments of order kk are polynomials of degree k2k-2 in ϵ\epsilon, with coefficients that are nonlinear functions of α\alpha. In particular, the rheological properties (k=2k=2) are independent of ϵ\epsilon and coincide exactly with those of the simple shear flow. The heat flux (k=3k=3) is linear in the thermal gradient (generalized Fourier's law), but with an effective thermal conductivity differing from the Navier--Stokes one. In addition, a heat flux component parallel to the flow velocity and normal to the thermal gradient exists. The theoretical predictions are validated by comparison with direct Monte Carlo simulations for the same model.Comment: 16 pages, 4 figures,1 table; v2: minor change

    Exact String Solutions in 2+1-Dimensional De Sitter Spacetime

    Get PDF
    Exact and explicit string solutions in de Sitter spacetime are found. (Here, the string equations reduce to a sinh-Gordon model). A new feature without flat spacetime analogy appears: starting with a single world-sheet, several (here two) strings emerge. One string is stable and the other (unstable) grows as the universe grows. Their invariant size and energy either grow as the expansion factor or tend to constant. Moreover, strings can expand (contract) for large (small) universe radius with a different rate than the universe.Comment: 11 pages, Phyzzx macropackage used, PAR-LPTHE 92/32. Revised version with a new understanding of the previous result

    Evolution of Polygonal Lines by the Binormal Flow

    Get PDF
    The aim of this paper is threefold. First we display solutions of the cubic nonlinear Schr ̈odinger equation on R in link with initial data a sum of Dirac masses. Secondly we show a Talbot effect for the same equation. Finally we prove the existence of a unique solution of the binormal flow with datum a polygonal line. This equation is used as a model for the vortex filaments dynamics in 3-D fluids and superfluids. We also construct solutions of the binormal flow that present an intermittency phenomena. Finally, the solution we construct for the binormal flow is continued for negative times, yielding a geometric way to approach the continuation after blow-up for the 1-D cubic nonlinear Schr ̈odinger equation

    On the energy of critical solutions of the binormal flow

    Get PDF
    The binormal flow is a model for the dynamics of a vortex filament in a 3-D inviscid incompressible fluid. The flow is also related with the classical continuous Heisen- berg model in ferromagnetism, and the 1-D cubic Schr ̈odinger equation. We consider a class of solutions at the critical level of regularity that generate singularities in finite time. One of our main results is to prove the existence of a natural energy associated to these solutions. This energy remains constant except at the time of the formation of the singularity when it has a jump discontinuity. When interpreting this conservation law in the framework of fluid mechanics, it involves the amplitude of the Fourier modes of the variation of the direction of the vorticity
    corecore