We present in this work results from numerical solutions, obtained by means
of the direct simulation Monte Carlo (DSMC) method, of the Boltzmann and
Boltzmann--Lorentz equations for an impurity immersed in a granular gas under
planar Couette flow. The DSMC results are compared with the exact solution of a
recent kinetic model for the same problem. The results confirm that, in steady
states and over a wide range of parameter values, the state of the impurity is
enslaved to that of the host gas: it follows the same flow velocity profile,
its concentration (relative to that of the granular gas) is constant in the
bulk region, and the impurity/gas temperature ratio is also constant. We
determine also the rheological properties and nonlinear hydrodynamic transport
coefficients for the impurity, finding a good semi-quantitative agreement
between the DSMC results and the theoretical predictions.Comment: 23 pages, 11 figures; v2: minor change