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EVOLUTION OF POLYGONAL LINES BY THE BINORMAL FLOW

VALERIA BANICA AND LUIS VEGA

Abstract. The aim of this paper is threefold. First we display solutions of the cubic
nonlinear Schrödinger equation on R in link with initial data a sum of Dirac masses.
Secondly we show a Talbot effect for the same equation. Finally we prove the existence
of a unique solution of the binormal flow with datum a polygonal line. This equation
is used as a model for the vortex filaments dynamics in 3-D fluids and superfluids. We
also construct solutions of the binormal flow that present an intermittency phenomena.
Finally, the solution we construct for the binormal flow is continued for negative times,
yielding a geometric way to approach the continuation after blow-up for the 1-D cubic
nonlinear Schrödinger equation.

1. Introduction

We first present the binormal flow framework and the obtained results. Then in §1.2 we
describe the 1-D cubic nonlinear Schrödinger equation results.

1.1. Evolution of polygonal lines through the binormal flow and intermittency.
Vortex filaments in 3-D fluids appear when vorticity is large and concentrated in a thin
tube around a curve in R3. The binormal (curvature) flow, that we refer hereafter as BF, is
the classical model for one vortex filament dynamics. It was derived by Da Rios 1906 in his
PhD advised by Levi-Civita by using a truncated Biot-Savart law and a renormalization in
time ([18]). The evolution of a R3-curve χ(t) parametrized by arclength x by the binormal
flow is

(1) χt = χx ∧ χxx.

Keeping in mind the Frenet’s system for the frames of 3-D curves composed by tangent,
normal, and binormal vectors (T, n, b)




T
n
b




x

=




0 c 0
−c 0 τ
0 −τ 0






T
n
b


 ,

where c, τ are the curvature and torsion, the binormal flow can be rewritten as

χt = c b.

BF was also derived as formal asymptotics in [1], and in [12] by using the technique of
matched asymptotics in the Navier-Stokes equations (i.e. to balance the cross-section
of the tube with the Reynolds number). In the recent paper [27], and still under some

Date: February 7, 2020.
1

http://arxiv.org/abs/1807.06948v2


2 V. BANICA AND L. VEGA

hypothesis on the persistence of concentration of vorticity in the tube, BF is rigorously
derived; moreover the considered curves are not necessarily smooth. This is based on the
existence of a correspondence between the two Hamilton-Poisson structures that give rise
to Euler and to BF.

Existence results were given for curves with curvature and torsion in Sobolev spaces
of high order ([26],[42],[21],[34]), and more generally existence results for currents in the
framework of a weak formulation of the binormal flow ([28]). Recently, the Cauchy problem
was shown to be well-posed for curves with a corner and curvature in weighted space ([3]).

An important feature of BF is that the tangent vector of a solution χ(t) solves the
Schrödinger map onto S2:

Tt = T ∧ Txx.
Furthermore, Hasimoto remarked in [26] that the function, that he calls the filament func-

tion, u(t, x) = c(t, x)ei
∫ x

0
τ(t,s)ds, satisfies a focusing 1-D cubic nonlinear Schrödinger equa-

tion (NLS) 1. Hasimoto’s transform can be viewed as an inverse Madelung transform send-
ing Gross-Pitaesvskii equation to compressible Euler equation with quantum pressure. It is
known that in order to avoid issues related to vanishing curvature, Bishop parallel frames
([7],[34]) can be used as explained in §4.3.

Several examples of evolutions of curves through the binormal flow were given finding
first particular solutions of the 1-D cubic NLS and then solving the corresponding Frenet
equations. Some of these examples are consistent at the qualitative level with classical
vortex filament dynamics as the line, the ring, the helix and travelling wave type vortices.
A special case are the self-similar solutions of the binormal flow. They are constructed
from the solutions

(2) uα(t, x) = α
ei

x2

4t√
4πit

= αeit∆δ0(x)

of the 1-D cubic NLS equation, renormalized in a sense specified in §1.2, with a Dirac mass
αδ0 at initial time. These BF solutions are of the type χ(t, x) =

√
tG( x√

t
), and form a a

1-parameter family {χα, α ≥ 0}, with χα(t) characterized by its curvature cα(t, x) = α√
t

and its torsion τα(t, x) =
x
2t . These solutions were known and used for quite a while in the

80’s ([36],[37],[11],[50]). The existence of a trace at time t = 0 was proved rigorously in
[25], and in particular it was shown that χα(0) is a broken line with one corner having an
angle θ satisfying

(3) sin

(
θ

2

)
= e−π α2

2 .

In particular the Dirac mass at the NLS level corresponds to the formation of a corner on
the curve, but the trace αδ0 of the filament function is not the filament function θδ0 of
χα(0). This turns out to have relevant consequences regarding the lack of continuity of

some norms at the time when the corner is created. In [4] it is proved the ‖T̂x( ·, t)‖∞ is

1The defocusing 1-D cubic Schrödinger equation is achieved if the target of the Schrödinger map equation
is the hyperbolic plane H2 instead of the sphere S2.
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discontinuous at that time. The same proof works if instead of this norm it is used the
following one

sup
j

∫ 4π(j+1)

4πj
|T̂x(x, t)|2 dx,

that fits better within the framework of Theorem 1.4, because due to the Frenet equations
Tx it is at the same level of regularity as the corresponding filament functions that solve
NLS.

We shall now turn our attention precisely to the evolution of curves that can generate
corners in finite time. The case of the formation and instantaneous disappearance of one
corner is now well understood thanks to the characterization of the family the self-similar
solutions, and the study in [3] of the evolution of non-closed curves with one corner and
with curvature in weighted L2 based spaces. On the other hand, a planar regular polygon
with M sides is expected to evolve through the binormal flow to skew polygons with Mq
sides at times tp,q =

p
2πq for odd q, see the numerical simulations in [23],[28], and [19] where

the integration of the Frenet equations at the rational times tp,q is also done.
In the present paper we place ourselves in the framework of initial data being polygonal

lines. The results presented are an important step forward to fill the gap between the case
of one corner and the much more delicate issue of closed polygons.

Theorem 1.1. (Evolution of polygonal lines through the binormal flow) Let χ0

be an arclength parametrized polygonal line with corners located at x ∈ Z, with the sequence
of angles θn ∈ (0, π) such that the sequence defined by (cf. (3))

(4)

√
− 2

π
log

(
sin

(
θn
2

))
,

belongs to l2,3. Then there exists χ(t), smooth solution of the binormal flow (1) on t 6= 0
and solution of (1) in the weak sense on R, with

|χ(t, x)− χ0(x)| ≤ C
√
t, ∀x ∈ R, |t| ≤ 1.

Remark 1.2. Under suitable conditions on the initial data χ0, the evolution can have an
intermittent behaviour: Proposition 3.2 insures that at times tp,q = 1

2π
p
q the curvature of

χ(t) displays concentrations near the locations x such that x ∈ 1
qZ, and χ(t) is almost a

straight segment in between.

Remark 1.3. There is a striking difference with respect to the case of a polygonal line
with just one corner in the following sense. The trajectory in time of the corner located
at (t, x) = (0, 0) of a self-similar solution, χα(t, 0), is given by a straight line for t >
0, as the Frenet frame of χα(t) is constant at x = 0. In §4.11 we show that for the
evolution of a polygonal line with several corners the trajectory of each corner, as t goes to
0, is a logarithmic spiral. Therefore, the presence of another corner on a nonclosed curve
immediately creates a modification of the trajectory.
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The proof goes as follows. In view of (3) and Hasimoto’s transform we consider an
appropriate 1-D cubic NLS equation with initial data

∑

k∈Z
αkδk,

with αk complex numbers defined in a precise way from the curvature and torsion angles
of χ0. Theorem 1.4 gives us a solution u(t) on t > 0. From this smooth solution on ]0,∞[
we construct a smooth solution χ(t) of the binormal flow on ]0,∞[, that we prove it has
a limit χ(0) at t = 0. Then the goal is to show that modulo a translation and a rotation
χ(0) is χ0. This is done in several steps. First we show that the tangent vector has a
limit at t = 0. Secondly we show that this limit is piecewise constant, so χ(0) is a segment
for x ∈]n, n + 1[,∀n ∈ Z. Then we prove, by analyzing the frame of the curve through
paths of self-similar variables, that χ(0) presents corners at the same locations as χ0, of
same angles as χ0. We recover the torsion angles of χ0 by using also a similar analysis

for modulated normal vectors Ñ(t, x) = e
i
∑

j 6=x |αj |2 log x−j√
t N(t, x). Therefore we recover χ0

modulo a translation and a rotation. This translation and rotation applied to χ(t) give us
the desired solution of the binormal flow for t > 0 with limit χ0 at t = 0. Uniqueness holds
in the class of curves having filament functions of type (10). Using the above recipe to
construct the evolution of a polygonal line for t > 0 we can extend χ(t) to negative times
by using the time reversibility of the equation.

1.2. The cubic NLS on R with initial data given by several Dirac masses. We
consider the cubic nonlinear Schrödinger equation on R

(5) i∂tu+∆u± 1

2
|u|2u = 0.

We first recall the known local well-posedness results, starting with what is known in the
framework of Sobolev spaces. The equation is well-posed inHs, for any s ≥ 0 ([22],[14]). On
the other hand, for s < 0 the Cauchy problem is ill-posed: in [29] uniqueness was proved
to be lost by using the Galilean transformation, and in [16] norm-inflation phenomena
were displayed. We note that the threshold obtained with respect of the scaling invariance

λu(λ2t, λx) is Ḣ− 1
2 . For s ≤ −1

2 the presence of norm inflating phenomena with loss of
regularity was pointed out in [13],[31], and also norm inflation around any data was proved
in [43]. Finally a growth control of Sobolev norms of Schwartz solutions for −1

2 < s < 0
on the line or the circle was shown in [30] and [33].

On the other hand well-posedness holds for data with Fourier transform in Lp spaces,
p < +∞ ([53],[24],[15]). A natural choice would be to consider initial data with Fourier
transform in L∞, as this space F(L∞) it is also invariant under rescaling.

We shall now focus on the case of initial data of Dirac mass type. Note that the Dirac

mass is borderline for Ḣ− 1
2 and that it belongs to F(L∞). For an initial datum given by

one Dirac mass, u(0) = αδ0, the equation is ill-posed. More precisely, it is showed in [29]
by using the Galilean invariance, that if there exists a unique solution it should be for
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positive times

α
e∓i |α|2

4π
log

√
t+ix

2

4t√
4πit

,

and then the initial datum is not recovered. We note here that this issue can be avoided
by a simple change of phase that leads to the equation

{
i∂tu+∆u± 1

2

(
|u|2 −A(t)

)
u = 0,

u(0) = αδ0,

with A(t) = α2

4πt . With this choice the equation has as a solution precisely the fundamental
solution of the linear equation uα(t, x) introduced in (2). Adding a real potential A(t) is a
very natural geometric normalization, as the BF solution constructed from a NLS solution
u(t, x) is the same as the one constructed from eiφ(t)u(t, x), see §4.3. This type of Wick
renormalization has been used in the periodic setting in previous works as in [9],[15],[44]
and [45], although the motivation in these cases came just from the need of avoiding some
resonant terms that become infinite.

However, even with this geometric renormalization the problem is still ill-posed, in the
sense that small regular perturbations of uα(t) at time t = 1 were proved in [2] to behave
near t = 0 as uα(t) + ei log tf(x) for some f ∈ H1. Therefore there is a loss of phase as t
goes to zero.

This loss of phase is a usual phenomena in the setting of the nonlinear Schrödinger
equations when singularities are formed, and it is of course a consequence of the gauge
invariance of the equation. How to continue the solution after the singularity has been
formed is therefore an important issue that appears recurrently in the literature, see for
example [38],[39],[10],[40].

In [3] we found a natural geometric way to continue the BF solution after the singularity,
in the shape of a corner, is created. As BF is time reversible, to uniquely continue a solution
for negative times requires to get a curve trace χ(0) at t = 0 and to construct a unique
solution for positive times, having as limit at t = 0 the inverse oriented curve χ(0,−s).
Note that using just continuity arguments and the characterization result of the self-similar
solutions that was proved in [25] one can construct in an artificial way the continuation of
a self-similar solution. A more delicate issue is how to determine the curve trace and its
Frenet frame at time t = 0 for small regular perturbations of BF self-similar solutions at
some positive time, and we based our analysis in [3] on the characterization result of the
self-similar solutions that was proved in [25]; in particular the small regular perturbations
of BF self-similar solutions at some positive time do not break the self-similar symmetry
of the singularity created at t = 0.

In Theorem 1.1 we prove that this procedure can be extended, not without difficulties,
to the case of a polygonal line, that can be viewed as a rough perturbation of the broken
line with one corner. There is no need for the line to be planar, and infinitely many corners
are permitted. In this case new problems concerning the phase loss appear at the NLS and
frame level, and again the characterization of the self-similar solutions plays a crucial role.
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For these reasons in this article we consider as initial data a combination of Dirac masses,

(6) u(0) =
∑

k∈Z
αkδk,

with coefficients in weighted summation spaces :

‖{αk}‖lp,s <∞,

where

‖{αk}‖lp,s :=
∑

k∈Z
(1 + |k|)ps|αk|p.

This choice of initial data has its own interest from the point of view of the Schrödinger
equation, because as far as we know and for the cubic nonlinearity in one dimension the
only results at the critical level of regularity are the ones in [3] mentioned above and that
deals with just one Dirac mass. The case of a periodic array of Dirac deltas of the same
precise amplitude, was studied in [19] where a candidate for a solution is proposed.

The case of a combination of Dirac masses as initial data for the Schrödinger equation
|u|p−1u with subcritical nonlinearity p < 3 was considered in [32]. It was showed that it
admits a unique solution, of the form

(7) u(t, x) =
∑

k∈Z
Ak(t)e

it∆δk(x),

where {Ak} ∈ C([0, T ]; l2,1)∩C1(]0, T ]; l2,1). As the nonlinear power approaches the critical
cubic power, things look more singular. In this paper we prove that the same type of ansatz
is valid for a naturally renormalized cubic equation.

Let us notice that the initial data (6) has the property

(8) û(0)(ξ) =
∑

k∈Z
αke

−ikξ,

and in particular û(0) is 2π−periodic. Moreover, the condition {αk} ∈ l2,s translates into

û(0) ∈ Hs(0, 2π). Conversely, every 2π−periodic function can be decomposed as in (8)
and so it represents the Fourier transform on R of a combination of Dirac masses as (7).
We denote

Hs
pF := {u ∈ S ′(R), û(ξ+2π) = û(ξ), û ∈ Hs(0, 2π)} ⊂ {u ∈ S ′(R), {‖û‖Hs(2πj,2π(j+1))}j ∈ l∞},

and

‖u‖Hs
pF

= ‖û‖Hs(0,2π).

Our first result concerns the existence of solutions for initial data in Hs
pF .

Theorem 1.4. (Solutions of 1-D cubic NLS linked to several Diracs masses as
initial data) Let s > 1

2 , 0 < γ < 1 and {αk} ∈ l2,s. We consider the 1-D cubic NLS
equation:

(9) i∂tu+∆u± 1
2

(
|u|2 − M

2πt

)
u = 0,
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with M =
∑

k∈Z |αk|2. There exists T > 0 and a unique solution on (0, T ) of the form

(10) u(t, x) =
∑

k∈Z
e∓i

|αk|2
4π

log
√
t(αk +Rk(t))e

it∆δk(x),

with

(11) sup
0<t<T

t−γ‖{Rk(t)}‖l2,s + t ‖{∂tRk(t)}‖l2,s < C.

Moreover, considering as initial data a finite sum of N Dirac masses

u(0) =
∑

k∈Z
αkδk,

with coefficients of equal modulus

(12) |αk| = a,

and equation (9) renormalized with M = (N − 1
2 )a

2, we have a unique solution

u(t) = eit∆u(0) ± ieit∆
∫ t

0
e−iτ∆

((
|u(τ)|2 − M

2πτ

)
u(τ)

)
dτ

2
,

such that ̂e−it∆u(t) ∈ C1((−T, T ),Hs(0, 2π)) with

‖e−it∆u(t)− u(0)‖Hs
pF

≤ Ctγ , ∀t ∈ (−T, T ).
Moreover, if s ≥ 1 then the solution is global in time.

Remark 1.5. Note that any αj such that (12) does not hold will imply that the corre-
sponding initial value problem is ill posed, similarly at what was proved in [29] and [3] in
the case of just one Dirac mass and that we mentioned above.

Remark 1.6. It is worth noting that performing the (reversible) pseudo-conformal trans-
form to the solution u of (9)

u(t, x) =
ei

x2

4t√
4πit

v(
1

t
,
x

t
), t > 0

we obtain a solution v of

(13) i∂tv +∆v ± 1

8πt

(
|v|2 − 2M

)
v = 0.

This was the procedure we used in [3].
To impose the ansatz (7) on u is equivalent to

(14) v(t, x) =
∑

k∈Z
Ak(

1

t
)e−i tk

2

4
+ixk

2 .

Therefore after pseudo-conformal transform our problem reduces to solve (13) in the peri-

odic setting with period [0, 4π]. Note that from (7) we have that |û(t)(ξ)| is 2π periodic.



8 V. BANICA AND L. VEGA

The proof of the theorem goes as follows. Plugging the general ansatz (7) into equation
(9) leads to a discrete system on {Ak(t)}, by using the fact that for fixed t the family

eit∆δk(x) =
ei

(x−k)2

4t√
4πit

is an orthonormal family of L2(0, 4πt). We solve the discrete system

on {Ak(t)} by a fixed point argument with Rk(t) = e−i
|αk|2
4π

log
√
tAk(t)−αk satisfying (11).

In the case of initial data a finite sum of N Dirac masses with coefficients of equal modulus
and equation (9) renormalized with M = (N − 1

2)a
2, we are led to solve the same fixed

point for Rk(t) = Ak(t)− αk.

Remark 1.7. The resonant part of the discrete system of {Ak(t)} is

i∂tak(t) =
1

8πt
ak(t)(2

∑

j

|aj(t)|2 − |ak(t)|2 − 2M).

It is a non-autonomous singular time-dependent coefficient version of the resonant system
of standard 1-D cubic NLS. Indeed, usually for questions concerning the long-time behavior
of cubic NLS, one introduces

v(t) = e−it∆u(t).

In the 1-D periodic case the Fourier coefficients of v(t) satisfy the system

i∂tvk(t) =
∑

k−j1+j2−j3=0

e−it(k2−j21+j22−j33)vj1(t)vj2(t)vj3(t),

so that the resonant system is:

i∂tak(t) = ak(t)(2
∑

j

|aj(t)|2 − |ak(t)|2).

Of course, for 1-D periodic NLS with data in Hs, s > 1
2 (that corresponds to {vn(0)} ∈

l2,s ⊂ l1) there is no issue for obtaining directly the local existence.

Remark 1.8. The regularity of {αj} might be weakened to lp spaces only (p < ∞), see
Remark 2.2. It is evident from (13) that formally

(15) ∂t
∑

j

|Aj(t)|2 = 0,

and therefore the l2 norm is preserved 2. As a matter of fact this says that the selfsimilar
solutions have finite mass for the 1-D cubic NLS when the mass is appropriately defined.
This has nothing to do with the complete integrability of the system because still works in
the subcritical cases studied in [32].

Note that to solve (13) for t ≥ T0 > 0 is quite straightforward making use of the available
Strichartz estimates in the periodic setting -see [8] and also [41] for a slight modification.
However, these methods do not give the behavior of the solution v when time approaches
infinity which is absolutely crucial for proving Theorem 1.1. As a consequence we are led

2equivalently
∫ 4π

0
|v(t, x)|2 dx = constant
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to make a more refined analysis. In view of Theorem 1.1 we consider weighted l2,s spaces;
this in particular will allow us to rigorusly prove that (15) holds.

The paper is structured as follows. In the next section we prove Theorem 1.4, and also
the extension Theorem 2.3 concerning some cases of Dirac masses not necessary located at
integer numbers. Section 3 contains the proof of a Talbot effect for some solutions given
by Theorem 1.4. In the last section we prove Theorem 1.1.

Acknowledgements: Both authors were partially supported by the by an ERCEA
Advanced Grant 2014 669689 - HADE. The first author was partially supported by the
Institut Universitaire de France and by the ANR project SingFlows. The second author
was partially supported by the MEIC project MTM2014-53850-P and MEIC Severo Ochoa
excellence accreditation SEV-2013-0323.

2. The 1-D cubic NLS with initial data given by several Dirac masses

In this section we give the proof of Theorem 1.4.

2.1. The fixed point framework. We denote N (u) = |u|2u
2 . By plugging the ansatz (7)

into equation (9) we get

(16)
∑

k∈Z
i∂tAk(t)e

it∆δk = N (u)− M

4πt
u = N (

∑

j∈Z
Aj(t)e

it∆δj)−
M

4πt
(
∑

k∈Z
Ak(t)e

it∆δk).

We have chosen here for simplicity the sign − in (9); the sign + can be treated the same.

The family eit∆δk(x) = ei
(x−k)2

4t√
4πit

is an orthonormal family of L2(0, 4πt) so by taking the

scalar product of L2(0, 4πt) with eit∆δk we obtain

i∂tAk(t) =

∫ 4πt

0
N (
∑

j∈Z
Aj(t)

ei
(x−j)2

4t√
4πit

)
−ei (x−k)2

4t

√
4πit

dx− M

4πt
Ak(t).

Note that as s > 1
2 we have {Aj} ∈ l2,s ⊂ l1 and we can develop the cubic power to get

(17) i∂tAk(t) =
1

8πt

∑

k−j1+j2−j3=0

e−i
k2−j21+j22−j23

4t Aj1(t)Aj2(t)Aj3(t)−
M

4πt
Ak(t).

We note already that for a sequence of real numbers a(k) we have:

(18) ∂t
∑

k

a(k)|Ak(t)|2 =
1

4πt
ℑ

∑

k−j1+j2−j3=0

a(k)e−i
k2−j21+j22−j23

4t Aj1(t)Aj2(t)Aj3(t)Ak(t)

=
1

8πti


 ∑

k−j1+j2−j3=0

a(k)e−i
k2−j21+j22−j23

4t Aj1(t)Aj2(t)Aj3(t)Ak(t)
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−
∑

j3−j2+j1−k=0

a(k)e−i
j23−j22+j21−k2

4t Aj2(t)Aj1(t)Ak(t)Aj3(t)




=
1

8πti

∑

k−j1+j2−j3=0

(a(k)− a(j3))e
−i

k2−j21+j22−j23
4t Aj1(t)Aj2(t)Aj3(t)Ak(t)

=
1

16πti

∑

k−j1+j2−j3=0

(a(k) − a(j1) + a(j2)− a(j3))e
−i

k2−j21+j22−j23
4t Aj1(t)Aj2(t)Aj3(t)Ak(t).

Therefore the system conserves the “mass” :

(19)
∑

k

|Ak(t)|2 =
∑

k

|Ak(0)|2,

and the momentum

(20)
∑

k

k|Ak(t)|2 =
∑

k

k|Ak(0)|2.

We split the summation indices of (17) into the following two sets:

NRk = {(j1, j2, j3) ∈ Z3, k − j1 + j2 − j3 = 0, k2 − j21 + j22 − j23 6= 0},
Resk = {(j1, j2, j3) ∈ Z3, k − j1 + j2 − j3 = 0, k2 − j21 + j22 − j23 = 0}.

As we are in one dimension, the second set is simply

Resk = {(k, j, j), (j, j, k), j ∈ Z},
as for k − j1 + j2 − j3 = 0 we have

k2 − j21 + j22 − j33 = 2(k − j1)(j1 − j2).

In particular we get
∑

k−j1+j2−j3=0

e−i
k2−j21+j22−j23

4t Aj1(t)Aj2(t)Aj3(t) =
∑

j1,j2∈Z
e−i

2(k−j1)(j1−j2)
4t Aj1(t)Aj2(t)Ak−j1+j2(t)

=
∑

j1 6=k

∑

j2 6=j1

e−i
2(k−j1)(j1−j2)

4t Aj1(t)Aj2(t)Ak−j1+j2(t)+
∑

j1 6=k

Aj1(t)Aj1(t)Ak(t)+
∑

j2∈Z
Ak(t)Aj2(t)Aj2(t).

Therefore the system (16) writes

(21) i∂tAk(t) =
1

8πt

∑

(j1,j2,j3)∈NRk

e−i
k2−j21+j22−j33

4t Aj1(t)Aj2(t)Aj3(t)

+
1

8πt
Ak(t)(2

∑

j

|Aj(t)|2 − |Ak(t)|2 − 2M).

As we have already noticed, this system conserves the “mass”
∑

j |Aj(t)|2, so since

M =
∑

j |αj |2, finding a solution for t > 0 satisfying

(22) lim
t→0

|Aj(t)| = |αj |,
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is equivalent to finding a solution for t > 0 satisfying also (22), for the following also
“mass”-conserving system:

(23) i∂tAk(t) =
1

8πt

∑

(j1,j2,j3)∈NRk

e−i
k2−j21+j22−j33

4t Aj1(t)Aj2(t)Aj3(t)−
1

8πt
|Ak(t)|2Ak(t).

By doing a change of phase Ak(t) = ei
|αk |2
4π

log
√
tÃk(t) we get as a system

(24) i∂tÃk(t) = fk(t)−
1

8πt
(|Ãk(t)|2 − |αk|2)Ãk(t),

where
(25)

fk(t) =
1

8πt

∑

(j1,j2,j3)∈NRk

e−i
k2−j21+j22−j33

4t e−i
|αk|2−|αj1

|2+|αj2
|2−|αj3

|2

4π
log

√
tÃj1(t)Ãj2(t)Ãj3(t).

Now we note that a solution of (24) satisfies

(26) ∂t|Ãk(t)|2 = 2ℑ(fk(t)Ãk(t)),

so obtaining a solution of (24) for t > 0 with

(27) lim
t→0

|Ãk(t)| = |αk|,

is equivalent to obtaining a solution for t > 0 also satisfying (27), for the following system,
that also enjoys (26):

(28) i∂tÃk(t) = fk(t)−
1

8πt

∫ t

0
2ℑ(fk(τ)Ãk(τ))dτ Ãk(t).

We recall that we expect solutions behaving as Ak(t) = ei
|αk|2
4π

log
√
t(αk + Rk(t)), with

{Rk} in the space:
(29)
Xγ := {{fk} ∈ C1((0, T ), l2,s), ‖{t−γfk(t)}‖L∞(0,T )l2,s + ‖{t ∂tfk(t)}‖L∞(0,T )l2,s <∞},

with T to be specified later. We also denote

‖{fk}‖Xγ = ‖{t−γfk(t)}‖L∞(0,T )l2,s + ‖{t ∂tfk(t)}‖L∞(0,T )l2,s .

To prove the theorem we shall show that we have a contraction on a suitable chosen ball
of size δ of Xγ for the operator Φ sending {Rk} into

Φ({Rk}) = {Φk({Rj})},
with

Φk({Rj})(t) = i

∫ t

0
gk(τ)dτ − i

∫ t

0

∫ τ

0
ℑ(gk(s)(αk +Rk(s))ds (αk +Rk(τ))

dτ

4πτ
,
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where

gk(t) =
1

8πt

∑

(j1,j2,j3)∈NRk

e−i
k2−j21+j22−j23

4t e−iωk,j1,j2,j3
log

√
t(αj1+Rj1(t))(αj2 +Rj2(t))(αj3+Rj3(t)),

and ωk,j1,j2,j3 =
|αk|2−|αj1

|2+|αj2
|2−|αj3

|2
4π .

Finally we note that in the case of N Dirac masses with coefficients |αk| = a and equation
(9) with M = (N − 1

2)a
2, we get instead of (23) the equation

(30)

i∂tAk(t) =
1

8πt

∑

(j1,j2,j3)∈NRk

e−i
k2−j21+j22−j33

4t Aj1(t)Aj2(t)Aj3(t)−
1

8πt
(|Ak(t)|2 − |αk|2)Ak(t).

Hence we can write Ak(t) = αk+Rk(t) and the same fixed point argument works for {Rk}.
2.2. The fixed point argument estimates.

Lemma 2.1. For {Rk} ∈ Xγ with ‖{Rk}‖Xγ ≤ δ we have the following estimates:

(31) ‖{gk(t)}‖l2,s ≤ C

t
(‖{αk}‖3l2,s + t3γδ3),

(32)

‖{
∫ t

0
gk(τ)dτ}‖l2,s ≤ Ct(‖{αj}‖3l2,s+‖{αj}‖5l2,s+t3γ(1+‖{αk}‖2l2,s)δ3+‖{αj}‖2l2,sδ+t2γδ3),

(33) ‖{
∫ t

0
gk(τ)(αk +Rk(τ))dτ}‖l2,s ≤ Ct(‖{αk}‖l2,s + tγδ)

×(‖{αj}‖3l2,s + ‖{αj}‖5l2,s + t3γ(1 + ‖{αk}‖2l2,s)δ3 + ‖{αj}‖2l2,sδ + t2γδ3).

Proof. We note first that

{Mj} ⋆ {Nj} ⋆ {Pj}(k) =
∑

(j1,j2,j3)∈NRk∪Resk

Mj1Nj2Pj3 ,

so in particular

(34)

∣∣∣∣∣∣
∑

(j1,j2,j3)∈NRk

Mj1Nj2Pj3

∣∣∣∣∣∣
≤ {|Mj |} ⋆ {|Nj |} ⋆ {|Pj |}(k).

We shall frequently use the following inequality:

(35) ‖{Mj}⋆{Nj}⋆{Pj}‖l∞+‖{Mj}⋆{Nj}⋆{Pj}‖l2,s ≤ C‖{Mj}‖l2,s‖{Nj}‖l2,s‖{Pj}‖l2,s .
The first part follows from l2,s ⊂ l1 and the second part follows using also the weighted
Young argument on two series:

‖{Mj} ⋆ {Nj}‖l2,s ≤ C‖{Mj} ⋆ {(1 + |j|)sNj}‖l2 + C‖{(1 + |j|)sMj} ⋆ {Nj}‖l2
≤ C‖{Mj}‖l1‖{(1 + |j|)sNj}‖l2 + C‖{(1 + |j|)sMj}‖l2‖{Nj}‖l1 ≤ C‖{Mj}‖l2,s‖{Nj}‖l2,s .
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Therefore by (34) we have

|gk(t)| ≤
C

t

∑

(j1,j2,j3)∈NRk

(|αj1 |+ |Rj1(t)|)(|αj2 |+ |Rj2(t)|)(|αj3 |+ |Rj3(t)|)

≤ C

t
{|αj |+ |Rj(t)|} ⋆ {|αj |+ |Rj(t)|} ⋆ {|αj |+ |Rj(t)|}(k),

and by (35) we get (31).

To estimate
∫ t
0 gk(τ)dτ we perform an integration by parts to get advantage of the non-

resonant phase and to obtain integrability in time:
(36)

i

∫ t

0
gk(τ)dτ = t

∑

(j1,j2,j3)∈NRk

e−i
k2−j21+j22−j23

4t e−iωk,j1,j2,j3
log

√
t

π(k2 − j21 + j22 − j23)
(αj1+Rj1(t))(αj2 +Rj2(t))(αj3+Rj3(t))

−
∫ t

0

∑

(j1,j2,j3)∈NRk

e−i
k2−j21+j22−j23

4τ

π(k2 − j21 + j22 − j23)

×∂τ (τe−iωk,j1,j2,j3
log

√
τ (αj1 +Rj1(τ))(αj2 +Rj2(τ))(αj3 +Rj3(τ))) dτ.

Indeed, for fixed t, this computation is justified by considering, for 0 < η < t, the quantity
Iηk (t) defined as Φ1

k({Rj})(t) but with the integral in time from η instead of 0. More
precisely, Iηk (t) is well defined as the integrand can be upper-bounded using (34) and (35)

by the function C
‖{αj}‖3

l2,s
+‖{Rj(τ)}‖3

l2,s

τ which is integrable on (η, t). In particular the
discrete summation commutes with the integration in time. Performing then integrations
by parts on Iηk (t) as above, we obtain for Iηk (t) an expression that yields as η → 0 the above

expression for
∫ t
0 gk(τ)dτ .

We obtain, in view of (35), and on the fact that on the resonant set |k2− j21 + j22 − j23 | ≥ 1,

|
∫ t

0
gk(τ)dτ | ≤ Ct{|αj|+ |Rj(t)|} ⋆ {|αj |+ |Rj(t)|} ⋆ {|αj |+ |Rj(t)|}(k)

+C(1 + ‖{αk}‖2l∞)

∫ t

0
{|αj |+ |Rj(τ)|} ⋆ {|αj |+ |Rj(τ)|} ⋆ {|αj |+ |Rj(τ)|}(k) dτ

+C

∫ t

0
{|τ ∂τRj(τ)|} ⋆ {|αj |+ |Rj(τ)|} ⋆ {|αj |+ |Rj(τ)|}(k) dτ.

We perform Cauchy-Schwarz in the integral terms to get the squares for the discrete variable
and we sum using (35):

‖{
∫ t

0
gk(τ)dτ}‖2l2,s ≤ Ct2 ‖{αj +Rj(t)}‖6l2,s + C(1 + ‖{αk}‖4l2,s) t

∫ t

0
‖{αj +Rj(τ)}‖6l2,sdτ

+Ct

∫ t

0
‖{αj +Rj(τ)}‖4l2,s‖{τ∂τRj(τ)}‖2l2,sdτ.
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Therefore we get (32):

‖{
∫ t

0
gk(τ)dτ}‖l2,s ≤ Ct(‖{αj}‖3l2,s + ‖{Rj(t)}‖3l2,s + ‖{αj}‖5l2,s)

+C(1 + ‖{αk}‖2l2,s)t1+3γ‖{τ−γRj(τ)}‖3L∞(0,T ),l2,s

+Ct‖{αj}‖2l2,s‖{τ∂τRj(τ)}‖L∞(0,T ),l2,s+Ct
1+2γ‖{τ−γRj(τ)}‖2L∞(0,T ),l2,s‖{τ∂τRj(τ)}‖L∞(0,T ),l2,s

≤ Ct(‖{αj}‖3l2,s + ‖{αj}‖5l2,s) + Ct1+3γ(1 + ‖{αk}‖2l2,s)δ3 + Ct‖{αj}‖2l2,sδ + Ct1+2γδ3.

The last estimate (33) is obtained the same way as (32), by adding in the computations
the extra-term αk +Rk(τ) and by upper-bounding it in modulus by ‖{αk}‖l2,s + τγδ. �

We now use (31) and (33) to get

‖{∂tΦk({Rj})(t)}‖l2,s ≤ ‖{gk(t)dτ}‖l2,s + ‖{
∫ t

0
ℑ(gk(s)(αk +Rk(s))ds (αk +Rk(t))}‖l2,s

C

t

≤ C

t
(‖{αk}‖3l2,s + t3γδ3) + C(‖{αk}‖l2,s + tγδ)2

×(‖{αj}‖3l2,s + ‖{αj}‖5l2,s + t3γ(1 + ‖{αk}‖2l2,s)δ3 + ‖{αj}‖2l2,sδ + t2γδ3).

On the other hand,

|{Φk({Rj})(t)}| ≤
∣∣∣∣
∫ t

0
gk(τ)dτ

∣∣∣∣+
∣∣∣∣
∫ t

0

∫ τ

0
ℑ(gk(s)(αk +Rk(s))ds (αk +Rk(τ))

dτ

4πτ

∣∣∣∣ ,

so by Cauchy-Schwarz

|{Φk({Rj})(t)}|2 ≤ C

∣∣∣∣
∫ t

0
gk(τ)dτ

∣∣∣∣
2

+C
√
t

∫ t

0

∣∣∣∣
∫ τ

0
ℑ(gk(s)(αk +Rk(s))ds

∣∣∣∣
2

(|αk|2+|Rk(τ)|2)
dτ

τ
3
2

.

Now we use (32) and (33) to get

‖{Φk({Rj})(t)}‖l2,s ≤ Ct(‖{αj}‖3l2,s+‖{αj}‖5l2,s+t3γ(1+‖{αk}‖2l2,s)δ3+‖{αj}‖2l2,sδ+t2γδ3)
+Ct(‖{αk}‖l2,s + tγδ)2

×(‖{αj}‖3l2,s + ‖{αj}‖5l2,s + t3γ(1 + ‖{αk}‖2l2,s)δ3 + ‖{αj}‖2l2,sδ + t2γδ3).

Summarizing, we have obtained

(37) ‖{Φ({Rk})}‖Xγ ≤ C(‖{αk}‖3l2,s + T 3γδ3) + CT (‖{αk}‖l2,s + T γδ)2

×(‖{αj}‖3l2,s + ‖{αj}‖5l2,s + T 3γ(1 + ‖{αk}‖2l2,s)δ3 + ‖{αj}‖2l2,sδ + T 2γδ3)

+CT 1−γ(‖{αj}‖3l2,s + ‖{αj}‖5l2,s + T 3γ(1 + ‖{αk}‖2l2,s)δ3 + ‖{αj}‖2l2,sδ + T 2γδ3)

+CT 1−γ(‖{αk}‖l2,s + T γδ)2

×(‖{αj}‖3l2,s + ‖{αj}‖5l2,s + T 3γ(1 + ‖{αk}‖2l2,s)δ3 + ‖{αj}‖2l2,sδ + T 2γδ3).

In view of (37), we can choose δ in terms of ‖{αj}‖l2,s , and T small with respect to
‖{αj}‖l2,s and γ, to obtain the stability estimate

‖{Φ({Rk})}‖Xγ < δ.
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The contraction estimate is obtained in the same way as the stability one. As a conclusion
the fixed point argument is closed and this settles the local in time existence of the solutions
of Theorem 1.4.

Remark 2.2. We notice that in (36) we just upper-bounded the inverse of the non-resonant
phase by 1. One can actually exploit this decay in the discrete summations to relax the
assumptions on the initial data. More precisely, for 1 ≤ p <∞ one can use:∥∥∥∥∥∥

∑

(j1,j2,j3)∈NRk

Mj1Nj2Pj3

k2 − j21 + j22 − j23

∥∥∥∥∥∥

p

lp

=
∑

k


 ∑

j1,j2;j1 /∈{k,j2}

Mj1Nj2Pk−j1+j2

|j1 − j2||k − j1|




p

≤ C
∑

k


∑

j1,j2

|Mj1 |p|Mj2 |p|Mk−j1+j2 |p



∑

j1,j2

1

(1 + |j1 − j2|)q(1 + |k − j1|)q




p

q

,

where q is the conjugate exponent of p. As 1 ≤ p <∞ we have q > 1 so∥∥∥∥∥∥
∑

(j1,j2,j3)∈NRk

Mj1Nj2Pj3

k2 − j21 + j22 − j23

∥∥∥∥∥∥
lp

≤ ‖{Mj}‖lp‖{Nj}‖lp‖{Pj}‖lp .

2.3. Global in time extension. We consider the local in time solution constructed pre-
viously. In the case s = 1 we shall prove that the growth of ‖{αj + Rj(t)}‖L∞(0,T )l2,1 is
controlled, so we can extend the solution globally in time. Global existence for s > 1 is
obtained by considering the l2,1 global solution and proving the persistency of the regular-
ity l2,s.

We shall use (18) with a(k) = k2 to get a control of the “energy”:

∂t
∑

k

k2|Ak(t)|2 = ∓ 1

16πt

∑

k−j1+j2−j3=0

(k2−j21+j22−j23)e−i
k2−j21+j22−j23

4t Aj1(t)Aj2(t)Aj3(t)Ak(t)

= ± it

4π

∑

k−j1+j2−j3=0

∂t

(
e−i

k2−j21+j22−j23
4t

)
Aj1(t)Aj2(t)Aj3(t)Ak(t).

By integrating from 0 to t and then using integrations by parts we get
∑

k

k2|Ak(t)|2 ≤
∑

k

k2|Ak(0)|2 + Ct
∑

k−j1+j2−j3=0

|Aj1(t)Aj2(t)Aj3(t)Ak(t)|

+C

∫ t

0

∑

k−j1+j2−j3=0

|∂τ (τAj1(τ)Aj2(τ)Aj3(τ)Ak(τ))|dτ

≤ ‖{αj}‖2l2,1+Ct
∑

k

(|Aj(t)|⋆|Aj(t)|⋆|Aj(t)|)(k)|Ak(t)|+
∫ t

0

∑

k

(|Aj(τ)|⋆|Aj(τ)|⋆|Aj(τ)|)(k)|Ak(τ)|dτ

+

∫ t

0

∑

k

(∂τ |Aj(τ)|⋆|Aj(τ)|⋆|Aj(τ)|)(k)|Ak(τ)|τdτ+
∫ t

0

∑

k

(|Aj(τ)|⋆|Aj(τ)|⋆|Aj(τ)|)(k)∂τ |Ak(τ)|τdτ.
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We shall use now the following estimate, based on Cauchy-Schwartz inequality, Young and

Hölder estimates for weak lp spaces, and the fact that {j− 1
2} ∈ l2w:

|
∑

k

{Mj}⋆{Nj}⋆{Pj}(k)Rk| ≤ ‖{Mj}⋆{Nj}⋆{Pj}‖l2‖Rj‖l2 ≤ C‖{Mj}‖l1w‖{Nj}‖l1w‖{Pj}‖l2‖Rj‖l2

≤ C‖{Mj j
1
2 }‖l2w‖{Nj j

1
2 }‖l2w‖{Pj}‖l2‖Rj‖l2

≤ C‖{Mj}‖
1
2

l2
‖{Mj}‖

1
2

l2,1
‖{Nj}‖

1
2

l2
‖{Nj}‖

1
2

l2,1
{Pj}‖l2‖Rj‖l2

to obtain

‖{Aj(t)}‖2l2,1 ≤ ‖{αj}‖2l2,1 + Ct‖{Aj(t)}‖3l2‖{Aj(t)}‖l2,1

+

∫ t

0
‖{Aj(τ)}‖3l2‖{Aj(τ)}‖l2,1dτ

+

∫ t

0
‖{∂τAj(τ)}‖l2‖{Aj(τ)}‖2l2‖{Aj(τ)}‖l2,1τdτ.

Now we notice that for system (17) we get

‖{∂τAj(t)}‖l2 ≤ C

t
(‖{Aj(t)} ⋆ {Aj(t)} ⋆ {Aj(t)}‖l2 + ‖{Aj(t)}‖l2)

≤ C

t
(‖{Aj(t)}‖l2,1‖{Aj(t)}‖2l2 + ‖{Aj(t)}‖l2).

By using also the conservation of “mass” (19) we finally obtain

‖{Aj(t)}‖2l2,1 ≤ ‖{αj}‖2l2,1 + Ct‖{αj}‖3l2‖{Aj(t)}‖l2,1

+

∫ t

0
‖{αj}‖3l2‖{Aj(τ)}‖l2,1dτ +

∫ t

0
‖{αj}‖4l2‖{Aj(τ)}‖2l2,1dτ.

We thus obtain by Grönwall’s inequality a control of the growth of ‖Aj(t)‖l2,1 , so the local
solution can be extended globally and the proof of Theorem (1.4) is finished.

2.4. Cases of Dirac masses not necessary located at integer numbers. Some cases
of Dirac masses, not necessary located at integer numbers, were treated in [32] and can be
extended here to the cubic case. We denote for doubly indexed sequences

‖{αk,k̃}‖2l2,s :=
∑

k,k̃∈Z

(1 + |k|+ |k̃|)2s|αk,k̃|2.

We note that a distribution f =
∑

k∈Z αk,k̃δak+bk̃ satisfies

f̂(ξ) =
̂∑

k∈Z
αk,k̃δak+bk̃(ξ) =

∑

k∈Z
αk,k̃e

−iξ(ak+bk̃),

that can be seen as the restriction to ξ1 = ξ2 = ξ of
∑

k∈Z
αk,k̃e

−iξ1ak−iξ2bk̃,
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which is the Fourier transform of

E(f) :=
∑

k∈Z
αk,k̃δ(ak,bk̃).

We denote

Hs
pF ;a,b := {u ∈ S ′(R2), û(ξ1+

2π

a
, ξ2) = û(ξ1, ξ2+

2π

b
) = û(ξ1, ξ2), û ∈ Hs((0,

2π

a
)×(0,

2π

b
))},

and
‖f‖

Hs,diag
pF ;a,b

= ‖Ê(f)‖Hs((0, 2π
a
)×(0, 2π

b
)).

Theorem 2.3. Let s > 1
2 , T > 0 and 1

2 < γ < 1. Let a, b ∈ R∗ such that a
b /∈ Q. We

consider the 1-D cubic NLS equation:

(38) i∂tu+∆u± 1

2
(|u|2 − M

2πt
)u = 0.

with M =
∑

k,k̃∈Z |αk,k̃|2 and #{(k, k̃), αk,k̃ 6= 0} < ∞. There exists ǫ0 > 0 such that if

‖{αk,k̃}‖l2,s ≤ ǫ0 then we have T > 0 and a unique solution on (0, T ) of the form

(39) u(t) =
∑

k,k̃∈Z

e∓i
|α

k,k̃
|2

4π
log

√
t(αk,k̃ +Rk,k̃(t))e

it∆δak+bk̃,

with the decay

(40) sup
0<t<T

t−γ‖{Rk,k̃(t)}‖l2,s + t ‖{∂tRk,k̃(t)}‖l2,s < C.

Moreover, considering an initial data a finite sum of N Dirac masses

u(0) =
∑

k∈Z
αk,k̃δak+bk̃,

with coefficients of same modulus |αk,k̃| = a and equation (38) normalized with M =

(N − 1
2 )a

2, we have a unique solution on (−T, T )

u(t) = eit∆u(0) ± ieit∆
∫ t

0
e−iτ∆

((
|u(τ)|2 − M

2πτ

)
u(τ)

)
dτ

2
,

such that ̂E(e−it∆u(t)) ∈ C1((−T, T ),Hs((0, 2πa )× (0, 2πb ))) with

‖e−it∆u(t)− u(0)‖
Hs,diag

pF ;a,b
≤ Ctγ , ∀t ∈ (−T, T ).

The new phenomenon here is that if for instance the initial data is the sum of three
Dirac masses located at 0, a and b then we see small effects on the dense subset on R given
by the group aZ + bZ. Another difference with respect to the previous case is that the
non-resonant phases can approach zero so we shall perform integration by parts from the
phase only on the free term. Due to this small divisor problem we impose on one hand
only a finite number of Dirac masses at time t = 0, and on the other hand a smallness
condition on the data.
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The proof of Theorem 2.3 goes similarly to the one of Theorem 1.4, by plugging the

ansatz (39) into equation (38) to get by using the orthogonality of the family {ei
(x−ak−bk̃)2

4t√
4πit

}
the associated system

i∂tAk,k̃(t)

= ∓ 1

8πt

∑

((j1,j̃1),(j2,j̃2),(j3,j̃3))∈NR
k,k̃

e−i
(ka+k̃b)2−(j1a+j̃1b)

2+(j2a+j̃2b)
2−(j3a+j̃3b)

2

4t Aj1,j̃1
(t)Aj2,j̃2

(t)Aj3,j̃3
(t)

± 1

8πt
Ak,k̃(t)(2

∑

j,j̃

|Aj,j̃(t)|2 − |Ak,k̃(t)|2 − 2M),

where NRk,k̃ is the set of indices such that the phase does not vanish i.e. such that

k − j1 + j2 − j3 = 0, k̃ − j̃1 + j̃2 − j̃3 = 0, k2 − j21 + j22 − j23 6= 0, and k̃ − j̃1 + j̃2 − j̃3 6= 0.
We have to solve the equivalent “mass”-conserving system:

i∂tAk,k̃(t)

(41)

= ∓ 1

8πt

∑

((j1,j̃1),(j2,j̃2),(j3,j̃3))∈NR
k,k̃

e−i
(ka+k̃b)2−(j1a+j̃1b)

2+(j2a+j̃2b)
2−(j3a+j̃3b)

2

4t Aj1,j̃1
(t)Aj2,j̃2

(t)Aj3,j̃3
(t)

∓ 1

8πt
|Ak,k̃(t)|2Ak,k̃(t).

We look for solutions of the form Ak,k̃(t) = e∓i
|α

k,k̃
|2

4π
log

√
t(αk,k̃+Rk,k̃(t)), with {Rk,k̃} ∈ Y γ :

(42) Y γ := {{fk,k̃} ∈ C((0, T ); l2,s)}.
As for Theorem 1.4, we make a fixed point argument in a ball of Y γ of size depending on
‖{αk,k̃}‖l2,s for the operator Φ sending {Rk,k̃} into

Φ({Rk,k̃}) = {Φk,k̃({Rj,j̃})},
with

Φk,k̃({Rj,j̃}(t)) = ∓i
∫ t

0
fk,k̃(τ) dτ±i

∫ t

0

∫ τ

0
ℑ(fk,k̃(s)(αk,k̃ +Rk,k̃(s))ds(αk,k̃+Rk,k̃(τ))

dτ

4πt
,

where

fk,k̃(t) =
∑

((j1,j̃1),(j2,j̃2),(j3,j̃3))∈NR
k,k̃

e−i
(ka+k̃b)2−(j1a+j̃1b)

2+(j2a+j̃2b)
2−(j3a+j̃3b)

2

4t

8πt

×e−i
|α

k,k̃
|2−|α

j1,j̃1
|2+|α

j2,j̃2
|2−|α

j3,j̃3
|2

4π
log t(αj1,j̃1

+Rj1,j̃1
(t))(αj2,j̃2

+Rj2,j̃2
(t))(αj3,j̃3

+Rj3,j̃3
(t)).

To avoid issues related to having the non-resonant phase approaching zero, we perform inte-
grations by parts only in the free term involving a finite number of terms, as #{(k, k̃), αk,k̃ 6=
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0} <∞. All the remaining terms contain powers of Rj,j̃(τ) so we get integrability in time

by using the Young inequalities (35) for double indexed sequences. However, due to the
presence of terms linear in Rj,j̃(τ) we need to impose a smallness condition on the initial

data ‖{αj,j̃}‖l2,s . Moreover, from the cubic terms treated without integrations by parts

as previously, we need to impose γ > 1
2 . The control of ‖{t∂tRk,k̃(t)}‖L∞(0,T )l2,s is easily

obtained a-posteriori, once a solution is constructed in Y γ .

3. The Talbot effect

The Talbot effect for the linear and nonlinear Schrödinger equations on the torus with ini-
tial data given by functions with bounded variation has been largely studied ([5],[46],[48],[52],
[20],[17]). Here we place ourselves in a more singular setting on R, and get closer to the
Talbot effect observed in optics (see for example [6]) which is typically modeled with Dirac
combs as we consider in this paper.

As a consequence of Theorem 1.4 the solution u(t) of equation (9) with initial data

u(0) =
∑

k∈Z
αkδk,

behaves for small times like eit∆u0. We compute first the linear evolution eit∆u0 which
displays a Talbot effect.

Proposition 3.1. (Talbot effect for linear evolutions) Let p ∈ N and u0 with û0
2π−periodic. For all tp,q =

1
2π

p
q with q odd and for all x ∈ R we have

(43) eitp,q∆u0(x) =
1√
q

∫ 2π

0
û0(ξ)e

−itp,qξ2+ixξ
∑

l∈Z

q−1∑

m=0

eiθm,p,qδ(x− 2tp,q ξ − l − m

q
) dξ,

for some θm,p,q ∈ R. We suppose now that moreover û0 is located modulo 2π only in a
neighborhood of zero of radius less than η π

p with 0 < η < 1. For a given x ∈ R we define

ξx :=
πq

p
dist

(
x,

1

q
Z

)
∈ [0,

π

p
).

Then there exists θx,p,q ∈ R such that

(44) eitp,q∆u0(x) =
1√
q
û0(ξx) e

−itp,q ξ2x+ix ξx+iθx,p,q .

In particular |eitp,q∆u0(l + m
q )| = |eitp,q∆u0(0)| and if x is at distance larger than η

q from
1
qZ then eitp,q∆u0(x) vanishes.

Moreover, the solution can concentrate near 1
qZ in the sense that there is a family of

initial data uλ0 =
∑

k∈Z α
λ
kδk and C > 0 such that

(45)

∣∣∣∣
eitp,q∆uλ0 (0)

eitp,q∆αλ
0δ0(0)

∣∣∣∣
λ→∞−→ ∞.



20 V. BANICA AND L. VEGA

We note here that thanks to Poisson summation formula the above proposition applies to
u0 =

∑
k∈Z δk. Therefore eit∆u0(x) = 0 for x /∈ 1

qZ, and is a Dirac mass otherwise, which

is the classical Talbot effect. However this kind of data does not satisfy the conditions
of Theorem 1.4. Nevertheless, the concentration phenomena (45) is obtained by taking a
sequence of initial data {uλ0} whose Fourier transform is periodic and concentrates near
the integers.

Proposition 3.1 insures the persistence of the Talbot effect at the nonlinear level.

Proposition 3.2. (Talbot effect for nonlinear evolutions) Let p ∈ N, ǫ ∈ (0, 1) and

qǫ such that ǫ2
√
qǫ log qǫ <

1
2 ; in particular qǫ

ǫ→0−→ +∞.
Let u0 be such that û0 is a 2π−periodic, located modulo 2π only in a neighborhood of

zero of radius less than η π
p with 0 < η < 1 and having Fourier coefficients such that

‖{αk}‖l2,s ≤ ǫ for some s > 1
2 . Let u(t, x) be the solution of (9) obtained in Theorem 1.4

from {αk}. Then for all tp,q = 1
2π

p
q with 1 ≤ q ≤ qǫ odd and for all x at distance larger

than η
q from 1

qZ the function u(t, x) almost vanishes in the sense:

(46) |u(tp,q, x)| ≤ ǫ.

Moreover, the solution can concentrate near 1
qZ in the sense that there is a family of

sequences {αλ
k} with ‖{αλ

k}‖l2,s
λ→∞−→ 0 such that the corresponding solutions uλ obtained in

Theorem 1.4 satisfy

(47)

∣∣∣∣
uλ(tp,q, 0)

eitp,q∆αλ
0δ0(0)

∣∣∣∣
λ→∞−→ ∞.

3.1. Proof of Propositions 3.1-3.2. We start by recalling the Poisson summation for-
mula

∑
k∈Z fk =

∑
k∈Z f̂(2πk) for the Dirac comb:

(
∑

k∈Z
δk)(x) =

∑

k∈Z
δ(x − k) =

∑

k∈Z
ei2πkx,

as

̂δ(x− ·)(2πk) =
∫ ∞

−∞
e−i2πkyδ(x− y) dy = e−i2πkx.

The computation of the free evolution with periodic Dirac data is

(48) eit∆(
∑

k∈Z
δk)(x) =

∑

k∈Z
e−it(2πk)2+i2πkx.

For t = 1
2π

p
q we have (choosing M = 2π in formulas (37) combined with (42) from [19])

(49) eit∆(
∑

k∈Z
δk)(x) =

1

q

∑

l∈Z

q−1∑

m=0

G(−p,m, q)δ(x − l − m

q
),
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which describes the linear Talbot effect in the periodic setting. Here G(−p,m, q) stands
for the Gauss sum

G(−p,m, q) =
q−1∑

l=0

e2πi
−pl2+ml

q .

Now we want to compute the free evolution of data u0 =
∑

k∈Z αkδk. As û0(ξ) =∑
k∈Z e

−ikξ is 2π−periodic we have:

eit∆u0(x) =
1

2π

∫ ∞

−∞
eixξe−itξ2 û0(ξ) dξ =

1

2π

∑

k∈Z

∫ 2π(k+1)

2πk
eixξ−itξ2 û0(ξ) dξ

=
1

2π

∫ 2π

0
û0(ξ)

∑

k∈Z
eix(2πk+ξ)−it(2πk+ξ)2 dξ =

1

2π

∫ 2π

0
û0(ξ)e

−itξ2+ixξ
∑

k∈Z
e−it (2πk)2+i2πk(x−2tξ) dξ.

Therefore, for tp,q =
1
2π

p
q we get using (48)-(49):

eitp,q∆u0(x) =
1

q

∫ 2π

0
û0(ξ)e

−itp,qξ2+ixξ
∑

l∈Z

q−1∑

m=0

G(−p,m, q)δ(x − 2tp,qξ − l − m

q
) dξ.

For q even G(−p,m, q) can be null. Therefore we consider q odd. In this case G(−p,m, q) =√
qeiθm for some θm,p,q ∈ R so we get for tp,q =

1
2π

p
q

eitp,q∆u0(x) =
1√
q

∫ 2π

0
û0(ξ)e

−itp,qξ2+ixξ
∑

l∈Z

q−1∑

m=0

eiθm,p,qδ(x− 2tp,q ξ − l − m

q
) dξ.

We note that for 0 ≤ ξ < 2π we have 0 ≤ 2tξ < 2p
q . For a given x ∈ R there exists a unique

lx ∈ Z and a unique 0 ≤ mx < q such that

x− lx −
mx

q
∈ [0,

1

q
).

We denote

ξx :=
πq

p
(x− lx −

mx

q
) =

πq

p
d(x,

1

q
Z) ∈ [0,

π

p
).

In particular if û0 is located modulo 2π only in a neighborhood of zero of radius less than
π
p then

eitp,q∆u0(x) =
1√
q
û0(ξx) e

−itp,q ξ2x+ix ξx+iθm,p,q ,

for some θx,p,q ∈ R. If moreover û0 is located modulo 2π only in a neighborhood of zero of
radius less than η π

p with 0 < η < 1, then the above expression vanishes for x at distance

larger than η
q from 1

qZ.

We are left with proving the concentration effect (45) of Proposition 3.1. We shall
construct a family of sequences {αλ

k} such that
∑

k∈Z α
λ
kδk concentrates in the Fourier
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variable near the integers. To this purpose we consider ψ a real bounded function with
support in [−1

2 ,
1
2 ] and ψ(0) = 1. We define

fλ(ξ) = λβψ(λξ),∀ξ ∈ [−π, π],
with β ∈ R. Thus we can decompose

fλ(ξ) =
∑

k∈Z
αλ
ke

ikξ,

and consider

uλ0 =
∑

k∈Z
αλ
kδk.

In particular, on [−π, π], we have ûλ0 = fλ. Given tp,q =
1
2π

p
q , for λ > p, the restriction of

ûλ0 to [−π, π] has support included in a neighborhood of zero of radius less than η π
p for a

η ∈]0, 1[. We then get by (44)

eitp,q∆uλ0(0) =
1√
q
ûλ0(0) e

−itp,q ξ2x+ix ξx+iθmx ,

so

|eitp,q∆uλ0 (0)| =
1√
q
|fλ(0)| = 1√

q
λβψ(0) =

1√
q
λβ.

On the other hand, at tp,q =
1
2π

p
q we have

|eitp,q∆αλ
0δ0(0)| =

√
4q

p
|αλ

0 | =
√

4q

p

1

2π

∣∣∣∣
∫ π

−π
fλ(ξ)dξ

∣∣∣∣ = C(ψ)

√
q

p
λβ−1

Therefore ∣∣∣∣
eitp,q∆uλ0 (0)

eitp,q∆αλ
0δ0(0)

∣∣∣∣ =
√
p

C(ψ)q
λ

λ→∞−→ ∞,

and the proof of Proposition 3.1 is complete.
Finally, for the first part of Proposition 3.2, as the sequence {αk} satisfies the conditions

of Theorem 1.4,

u(tp,q, x) =
∑

k∈Z
e∓i

|αk |2
4π

log
√
tp,q(αk +Rk(tp,q))e

itp,q∆δk(x),

so ∣∣∣∣∣u(tp,q, x)−
∑

k∈Z
eitp,q∆αkδk(x)

∣∣∣∣∣

≤
∑

k∈Z
(1− e∓i

|αk|2
4π

log
√
tp,q )αke

itp,q∆δk(x) +
∑

k∈Z
e∓i

|αk|2
4π

log
√
tp,qRk(tp,q)e

itp,q∆δk(x).
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From Proposition 3.1, if x is at distance larger than η
q from 1

qZ then eitp,q∆
∑

k αkδk(x)

vanishes. Also, from (37) we can choose the radius δ of the fixed point argument for {Rk}
to be of type C‖{αk}‖3l2,s so we get

|u(tp,q, x)| ≤
∑

k∈Z
|1− ei

∓|αk|2
4π

log
√
tp,q ||αk|

C√
tp,q

+ C‖{αk}‖3l2,st
γ− 1

2
p,q .

If q is such that ‖{αk}‖2l∞ log q < 1
2 then we obtain

|u(tp,q, x)| ≤ C
√
q log q

∑

k∈Z
|αk|3 +

C

qγ−
1
2

‖{αk}‖3l2,s ,

and therefore (46) follows for C
√
q log q ǫ2 < 1.

For the last part of Proposition 3.2 we proceed as for the last part of Proposition 3.1,
and we suppose also that ψ ∈ Hs(R) with s > 1

2 , and impose β < 1
2−s. Then the condition

ψ ∈ Hs(R) insures us that {αλ
k} ∈ l2,s, and moreover ‖{αλ

k}‖l2,s = C(ψ)λβ+s− 1
2

λ→+∞−→ 0.

Therefore, for λ large enough, by using the same estimates as above we obtain for 1
2 < γ < 1

|uλ(tp,q, 0)− eitp,q∆uλ0(0)| ≤ C
√
q log q‖{αλ

k}‖3l2,s +
C

qγ−
1
2

‖{αλ
k}‖3l2,s ≤ C

√
q log qλ3β+3s− 3

2 ,

so ∣∣∣∣
uλ(tp,q, 0)

eitp,q∆αλ
0δ0(0)

− eitp,q∆uλ0 (0)

eitp,q∆αλ
0δ0(0)

∣∣∣∣ ≤ C log qλ2β+3s− 1
2 .

By choosing β = 3
2 (

1
2 − s)− we have λ2β+3s− 1

2 ≪ λ so in view of (45) the divergence (47)
follows.

4. Evolution of polygonal lines through the binormal flow

In this section we prove Theorem 1.1.

4.1. Plan of the proof. We consider equation (9) with initial data

u(0) =
∑

k∈Z
αkδk,

where the coefficients αk will be defined in §4.2 in a specific way involving geometric
quantities characterizing the polygonal line χ0. Then Theorem 1.4 gives us a solution
u(t, x) on t > 0. From this smooth solution on ]0,∞[ we construct in §4.3 a smooth
solution χ(t) of the binormal flow on ]0, ,∞[, that has a limit χ(0) at t = 0. Now the
goal is to prove that the curve χ(0) is the curve χ0 modulo a translation and a rotation.
This is done in several steps. First we show in §4.4 that the tangent vector has a limit at
t = 0. Secondly we show in §4.5 that χ(0) is a segment for x ∈]n, n + 1[,∀n ∈ Z. Then
we prove in §4.7, by analyzing the frame of the curve through self-similar variables paths,
that at points x = k ∈ Z the curve χ(0) presents a corner of same angle as χ0. In §4.9 we
recover the torsion of χ0 by using also a similar analysis for modulated normal vectors in
§4.8. Therefore we conclude in §4.10 that χ(0) and χ0 coincide modulo a translation and
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a rotation. By considering the corresponding translated and rotated χ(t) we obtain the
desired binormal flow solution with limit χ0 at t = 0. The extension to negative times is
done by using time reversibility. Uniqueness holds in the class of curves having filament
functions of type (7). In §4.11 we describe some properties of the binormal flow solution
given by the Theorem 1.1.

4.2. Designing the coefficients of the Dirac masses in geometric terms. Let χ0(x)
be a polygonal line paramatrized by archlength, having at least two consecutive corners,
located at x = x0 and x = x1. We denote by {xn, n ∈ L} ⊂ R, the locations of all
its corners ordered incresingly: xn < xn+1. Here L stand for a finite or infinite set of
consecutive integers starting at n = 0. We can characterize such a curve by the location
of its corners {xn, n ∈ L} ⊂ R and by a triple sequence {θn, τn, δn}n∈L where θn ∈]0, π[,
τn ∈ [0, π] and δn ∈ {−,+}, τ0 = 0, δ0 = +, in the following way.

Let us first denote by Tn ∈ S2 the tangent vector of χ0(x) for x ∈]xn, xn+1[. For n ∈ L we
define θn ∈]0, π[ to be the (curvature) angle between Tn−1 and Tn. We note that given only
Tn−1 and θn we have a [0, 2π[-parameter of possibilities to choose Tn. We define τ0 = 0,
δ0 = + and for n > 0 we define a (torsion) angle τn ∈ [0, π] at the corner located at xn to
be such that

(50) cos(τn) =
Tn−1 ∧ Tn
|Tn−1 ∧ Tn|

.
Tn ∧ Tn+1

|Tn ∧ Tn+1|
.

We note now that given only Tn−1, Tn, θn and τn we have two possibilities to choose Tn+1.
Indeed, Tn+1 is determined by the position of Tn ∧ Tn+1 in the plane Πn orthogonal to
Tn, given by the oriented frame Tn−1 ∧ Tn and Tn ∧ (Tn−1 ∧ Tn). Therefore we have two
possibilities by orienting it with respect to Tn−1 ∧ Tn: by τn or by −τn. We define δn = +
if (Tn−1 ∧ Tn)∧ (Tn ∧ Tn+1) points in the same direction as Tn, and δn = − if it points out
in the opposite direction. For n < 0 we define similarly (torsion) angles τn ∈ [0, π[ at the
corner located at xn.

Conversely, given L a set of consecutive integers containing 0 and 1, given an increasing
sequence {xn, n ∈ L} ⊂ R, and given a triple sequence {θn, τn, δn}n∈L where θn ∈]0, π[,
τn ∈ [0, π] and δn ∈ {−,+}, such that τ0 = 0, δ0 = +, we can determine a polygonal line
χ0, unique up to rotations and translation, in the following way. We construct first the
tangent vectors, then χ0 is obtained by setting χ′

0(x) = Tn on x ∈]xn, xn+1[. We pick a
unit vector and denote it T−1. Then we pick a unit vector having an angle θ0 with T−1,
and we call it T0. Then we consider all unit vectors v having an angle θ1 with T0. Among
them, we choose the two of them such that T0 ∧ v, that lives in the plane Π0 orthogonal
to T0, have an angle τ1 with T−1 ∧ T0. Eventually, we choose T1 to be the one of the two
such that if δ0 = + the vector (T−1 ∧ T0)∧ (T0 ∧ v) points in the same direction as T0, and
such that if δ0 = + the vector (T−1 ∧ T0) ∧ (T0 ∧ v) points in the opposite direction of T0.
We iterate this process to construct χ0(x) on x > x0, and similarly to construct χ0(x) on
x < x0.

Given χ0 the polygonal line of the statement, we define {xn, n ∈ L} the ordered set of its
integer corner locations and the corresponding sequence {θn, τn, δn}n∈L where θn ∈]0, π[,
τn ∈ [0, π] and δn ∈ {−,+}, τ0 = 0, δ0 = +. Then we define αk = 0 if k /∈ {xn, n ∈ L} and
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if k = xn for some n ∈ L we define αk ∈ C in the following way. First we set

(51) |αk| =
√

− 2

π
log

(
sin

(
θn

2

))
.

Then we set Arg(αx0) = 0 and we define Arg(αk) ∈ [0, 2π) to be determined by

(52)

{
cos(τn) = − cos(φ|αxn | − φ|αxn+1 | + βn +Arg(αxn)−Arg(αxn+1)),

δn = −sgn(sin(φ|αxn | − φ|αxn+1 | + βn +Arg(αxn)−Arg(αxn+1))),

where {φ|αxn |} are defined in Lemma 4.8 and depend only on |αxn |, and
βn = (|αxn |2 − |αxn+1 |2) log |xn − xn+1|.

We consider the solution u(t, x) given by Theorem (1.4) for the sequence
√
4πiαk and

1
2 < γ < 1, that solves

(53) i∂tu+∆u+ 1
2

(
|u|2 − 2M

t

)
u = 0,

with M =
∑

k∈Z |αk|2, and can be written as

(54) u(t, x) =
∑

k∈Z
e−i|αk|2 log

√
t(αk +Rk(t))

ei
|x−k|2

4t√
t

,

with

sup
0<t<T

t−γ‖{Rk(t)}‖l2,s + t ‖{∂tRk(t)}‖l2,s < C.

4.3. Construction of a solution of the binormal flow for t > 0. Given an orthonormal
basis (v1, v2, v3) of R

3, a point P ∈ R3 and a time t0 > 0 we construct a frame at all points
x ∈ R and times t > 0 by imposing3 (T, e1, e2)(t0, 0) = (v1, v2, v3),




T
e1
e2




t

(t, x) =




0 −ℑux ℜux
ℑux 0 − |u|2

2 + M
2t

−ℜux |u|2
2 − M

2t 0







T
e1
e2


 (t, x),

and 


T
e1
e2




x

(t, x) =




0 ℜu ℑu
−ℜu 0 0
−ℑu 0 0






T
e1
e2


 (t, x).

3Actually we should work in the definition of the evolution in time and in space laws for the frame with

v(t, x) = eiM log
√

tu(t, x) instead of u(t, x). Indeed, this construction leads, by identifying Ttx = Txt, e1tx =
e1xt, e2tx = e2xt to the NLS equation (53) with nonlinearity 1

2

(

|v|2 − M
t

)

v. However, for simplicity of
the presentation we shall use u(t, x) as the space-independent change of phase does not change the BF

constructed curve. Indeed, it is easy to see that if (T,N) is constructed by (55)-(58), then (T, e−iφ(t)N) is

constructed by the same evolution laws with v(t, x) = eiφ(t)u(t, x) instead of u(t, x) and so the constructed
tangent vector is the same.
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We can already notice that T (t, x) satisfies the Schrödinger map:

Tt = T ∧ Txx.
We define now for all points x ∈ R and times t > 0:

χ(t, x) = P +

∫ t0

t
(T ∧ Tx)(τ, 0)dτ +

∫ x

0
T (t, s)ds.

As T (t, x) satisfies the Schrödinger map we have Tt = (T ∧ Tx)x, so we can easily compute
that χ(t, x) satisfies the binormal flow:

χt = T ∧ Tx = χx ∧ χxx.

We note that there are two degrees of freedom in this construction - the choice of the
orthonormal basis (v1, v2, v3) of R3 and the choice of the point P ∈ R3. Changing these
parameters is equivalent to rotate and translate respectively the solution χ(t). The resulting
evolution of curves is still a solution of the binormal flow, with the same laws of evolution
in time and space for the frame.

We introduce now the complex valued normal vector

N(t, x) = e1(t, x) + ie2(t, x).

With this vector we can write in a simpler way the laws of evolution in time and space for
the frame, that will be useful in the rest of the proof:

(55) Tx = ℜu e1 + ℑu e2 = ℜ(uN),

(56) Nx = e1x + ie2x = −ℜuT − iℑuT = −uT,

(57) Tt = −ℑux e1 +ℜux e2 = ℑ(uxN),

(58)

Nt = ℑux T +

(
−|u|2

2
+
M

2t

)
e2− iℜux T + i

( |u|2
2

− M

2t

)
e1 = −iux T + i

( |u|2
2

− M

2t

)
N,

(59) χt = T ∧ Tx = T ∧ ℜ(uN) = ℑ(uN).

In particular from (54) and (59) we have for 0 < t1 < t2 < 1:

|χ(t2, x)− χ(t1, x)| =
∣∣∣∣
∫ t2

t1

χt(t, x)dt

∣∣∣∣ ≤
∫ t2

t1

|u(t, x)|dt

≤
∫ t2

t1

∑

j

|αj +Rj(t)|
dt√
t
≤ C

√
t2(‖{αj}‖l1 + ‖{Rj}‖L∞(0,1)l1).

This implies the existence of a limit curve at t = 0 for all x ∈ R:

∃ lim
t→0

χ(t, x) =: χ(0, x).
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Moreover, χ(0) is a continuous curve.

4.4. Existence of a trace at t = 0 for the tangent vector. For further purposes we
shall need to show that the tangent vector T (t, x) has a limit T (0, x) at t = 0, and moreover

we shall need to get a convergence decay of selfsimilar type
√
t

d(x,Z) for x close to Z. This is

insured by the following lemma.

Lemma 4.1. Let 0 < t1 < t2 < 1. If x ∈ R\1
2Z then

(60) |T (t2, x)− T (t1, x)| ≤ C(1 + |x|)
√
t2

(
1

d(x, 12Z)
+

1

d(x,Z)

)
,

while if x ∈ 1
2Z then

(61) |T (t2, x)− T (t1, x)| ≤ C(1 + |x|)
√
t2.

In particular for any x ∈ R there exists a trace for the tangent vector at t = 0:

(62) ∃ lim
t→0

T (t, x) =: T (0, x).

Proof. In view of (57) and (54) we have

T (t2, x)− T (t1, x) =

∫ t2

t1

ℑ(uxN(t, x)) dt

= ℑ
∫ t2

t1

∑

j

ei|αj |2 log
√
t(αj +Rj(t))

e−i (x−j)2

4t√
t

(−i)(x − j)

2t
N(t, x) dt.

In case j = x the integrant vanishes so we get the left-hand-side of (61) null.
For j 6= x we perform an integration by parts that exploits the oscillatory phase to get

integrability in time:

T (t2, x)−T (t1, x) =


ℑ
∑

j 6=x

ei|αj |2 log
√
t(αj +Rj(t))

e−i
(x−j)2

4t√
t

(−i) 4t2

(x− j)2
(−i)(x− j)

2t
N(t, x)



t2

t1

+2ℑ
∫ t2

t1

∑

j 6=x

e−i
(x−j)2

4t

x− j
(
√
t ei|αj |2 log

√
t(αj +Rj(t))N(t, x))t dt =: I0 + I1 + I2 + I3 + I4,

where we have denoted by I0 the boundary term and by I1, I2, I3, I4 the terms obtained
after the differentiation in time of the quadruple product in the integral part. We consider
first the boundary term

|I0| ≤ C
√
t2
∑

j 6=x

|αj +Rj(t2)|
1

|x− j| +C
√
t1
∑

j 6=x

|αj +Rj(t1)|
1

|x− j| .

If x ∈ Z then we have

|I0| ≤ C
√
t2(‖{αj}‖l1 + ‖{Rj}‖L∞(0,t2)l1),
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while if x /∈ Z

|I0| ≤ C

√
t2

d(x,Z)
(‖{αj}‖l1 + ‖{Rj}‖L∞(0,t2)l1).

Therefore the contribution of I0 fits with the estimates in the statement of the Lemma.

The terms I1 and I2 can be treated the same, as
∫ t2
t1
(
√
te−i|αk|2 log

√
t)t dt ≤ C

√
t2. Also the

term I3 can be treated similarly, as |∂tRj(t))| ≤ C
t on (0, 1). We are left with the I4 term,

which contains in view of (58) the expression Nt = −iux T + i
(
|u|2
2 − M

2t

)
N :

I4 = 2ℑ
∫ t2

t1

∑

j 6=x

e−i
(x−j)2

4t

x− j

√
t ei|αj |2 log

√
t(αj +Rj(t))

×


−i

∑

k

e−i|αk|2 log
√
t(αk +Rk(t))

ei
(x−k)2

4t√
t

i
(x− k)

2t
T (t, x)

+i



∑

r,r̃ e
−i(|αr |2−|αr̃|2) log

√
t(αr +Rr(t))(αr̃ +Rr̃(t))e

i (x−r)2−(x−r̃)2

4t

2t
− M

2t


N(t, x)


 dt.

We notice that the second term can be upper-bounded as I0. We are thus left with the
first term:

I4,1 = ℑ
∫ t2

t1

∑

j,k 6=x

e−i
(j−k)(j+k−2x)

4t
x− k

x− j
ei(|αj |2−|αk|2) log

√
t(αj +Rj(t))(αk +Rk(t))T (t, x)

dt

t
,

for which we still have an obstruction for the integrability in time. The terms in the sum
for which j = k have null contribution as they are real numbers. Also, in case 2x ∈ Z, the
terms in the sum for which j + k − 2x = 0 give

−ℑ
∫ t2

t1

∑

k 6=x

ei(|α−k+2x|2−|αk|2) log
√
t(α−k+2x +R−k+2x(t))(αk +Rk(t))T (t, x)

dt

t

= −ℑ
∫ t2

t1

∑

j 6=x

ei(|αj |2−|α−j+2x|2) log
√
t(αj +Rj(t))(α−j+2x +R−j+2x(t))T (t, x)

dt

t

= ℑ
∫ t2

t1

∑

j 6=x

ei(−|αj |2+|α−j+2x|2) log
√
t(αj +Rj(t))(α−j+2x +R−j+2x(t))T (t, x)

dt

t

= ℑ
∫ t2

t1

∑

k 6=x

ei(|α−k+2x|2−|αk|2) log
√
t(α−k+2x +R−k+2x(t))(αk +Rk(t))T (t, x)

dt

t
,

so their contribution is null.
Therefore we have, for all x ∈ R,

I4,1 = ℑ
∫ t2

t1

∑

j,k 6=x; j 6=k; j+k 6=2x

e−i (j−k)(j+k−2x)
4t

x− k

x− j
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×ei(|αj |2−|αk|2) log
√
t(αj +Rj(t))(αk +Rk(t))T (t, x)

dt

t
.

We perform an integration by parts:

I4,1 = ℑ


 ∑

j,k 6=x; j 6=k; j+k 6=2x

e−i (j−k)(j+k−2x)
4t

(−i)4t2
(j − k)(j + k − 2x)

x− k

x− j

×ei(|αj |2−|αk|2) log
√
t(αj +Rj(t))(αk +Rk(t))

T (t, x)

t

]t2

t1

+4ℑ
∫ t2

t1

∑

j,k 6=x; j 6=k; j+k 6=2x

e−i
(j−k)(j+k−2x)

4t
i

(j − k)(j + k − 2x)

x− k

x− j

×(tei(|αj |2−|αk|2) log
√
t(αj +Rj(t))(αk +Rk(t))T (t, x))t dt

=: I04,1 + I14,1 + I24,1 + I34,1 + I44,1 + I54,1,

where I04,1 stands for the boundary term and I14,1, I
2
4,1, I

3
4,1, I

4
4,1 and I54,1 are the terms after

differentiating in time the quintuple product in the integral. For the boundary term we
have

|I04,1| ≤ 4t2
∑

j,k 6=x; j 6=k; j+k 6=2x

|x− k|
|j − k||j + k − 2x||x− j| |αj +Rj(t2)||αk +Rk(t2)|

+4t1
∑

j,k 6=x; j 6=k; j+k 6=2x

|x− k|
|j − k||j + k − 2x||x− j| |αj +Rj(t1)||αk +Rk(t1)|.

As for j 6= k

(63)
|x− k|

|j − k||j + k − 2x||x− j| ≤
|x− j|+ |j + k − 2x|

|j − k||j + k − 2x||x− j| ≤
1

|j + k − 2x| +
1

|x− j| ,

we have for x ∈ 1
2Z

|I04,1| ≤ Ct2(‖{αj}‖l1 + ‖{Rj}‖L∞(0,t2)l1)
2.

while for x /∈ 1
2Z we obtain

|I04,1| ≤ Ct2

(
1

d(x, 12Z)
+

1

d(x,Z)

)
(‖{αj}‖l1 + ‖{Rj}‖L∞(0,t2)l1)

2.

The terms I14,1, I
2
4,1, I

3
4,1 and I44,1 can be upper-bounded as I04,1 by using moreover for I34,1

and I44,1 the bound ∂tRj(t)) ≤ C
t on (0, 1). The last term I54,1 involves, in view of (57),

Tt(t, x) = ℑ(uxN)(t, x) = ℑ
∑

r

ei|αr|2 log
√
t(αr +Rr(t))

e−i
(x−r)2

4t√
t

(−i)(x− r)

2t
N(t, x)

so

I54,1 = −1

2
ℑ
∫ t2

t1

∑

j,k 6=x; j 6=k; j+k 6=2x

e−i (j−k)(j+k−2x)
4t

i

(j − k)(j + k − 2x)

x− k

x− j
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×ei(|αj |2−|αk|2) log
√
t(αj +Rj(t))(αk+Rk(t))ℜ

∑

r

ei|αr |2 log
√
t(αr +Rr(t))e

−i (x−r)2

4t (x−r)N(t, x)
dt√
t
,

and in particular

|I54,1| ≤ C

∫ t2

t1

∑

j,k 6=x; j 6=k; j+k 6=2x

|x− k|
|j − k||j + k − 2x||x− j|

×|αj +Rj(t)||αk +Rk(t)|
∑

r

|αr +Rr(t)||x− r| dt√
t
.

We can write
∑

r

|αr +Rr(t)||x− r| ≤ C(1 + |x|)(‖{αj}‖
l2,

3
2
+ + ‖{Rj}‖

L∞(0,t2)l
2, 32

+ ),

so by using (63) we get for x ∈ 1
2Z:

|I54,1| ≤ C(1 + |x|)
√
t2(‖{αj}‖l1 + ‖{Rj}‖L∞(0,t2)l1)

2(‖{αj}‖
l2,

3
2
+ + ‖{Rj}‖

L∞(0,t2)l
2, 32

+ ),

while for x /∈ 1
2Z we obtain:

|I54,1| ≤ C
√
t2(1 + |x|)

(
1

d(x, 12Z)
+

1

d(x,Z)

)

×(‖{αj}‖l1 + ‖{Rj}‖L∞(0,t2)l1)
2(‖{αj}‖

l2,
3
2
+ + ‖{Rj}‖

L∞(0,t2)l
2, 32

+ ).

Therefore the proof of the Lemma is completed. �

4.5. Segments of the limit curve at t = 0.

Lemma 4.2. Let n ∈ Z and x1, x2 ∈ (n, n + 1). Then

T (0, x1) = T (0, x2).

In particular, we recover that χ(0) is a polygonal line, and might have corners only at
integer locations.

Proof. From Lemma 4.1 we have

(64) T (0, x1)− T (0, x2) = lim
t→0

(T (t, x1)− T (t, x2)).

In view of (55) we compute

T (t, x1)− T (t, x2) =

∫ x2

x1

ℜ(uN(t, x)) dx

= ℜ
∫ x2

x1

∑

j

ei|αj |2 log
√
t(αj +Rj(t))

e−i
(x−j)2

4t√
t

N(t, x) dx.



31

In this case the integral is well defined, but we need decay in time. For this purpose we
perform an integration by parts, that is allowed on (x1, x2) ⊂ (n, n+ 1):

T (t, x1)− T (t, x2) =


ℜ
∑

j

ei|αj |2 log
√
t(αj +Rj(t))

e−i
(x−j)2

4t√
t

i
2t

x− j
N(t, x)



x2

x1

+2
√
tℑ
∫ x2

x1

∑

j

ei|αj |2 log
√
t(αj +Rj(t))e

−i
(x−j)2

4t

(
1

x− j
N(t, x)

)

x

dx

= O(
√
t) + 2

√
tℑ
∫ x2

x1

∑

j

ei|αj |2 log
√
t(αj +Rj(t))e

−i (x−j)2

4t
1

x− j
Nx(t, x) dx.

As by (56) we have Nx = −uT ,
T (t, x1)− T (t, x2) = O(

√
t)

−2ℑ
∑

j,k

ei(|αj |2−|αk|2) log
√
t(αj +Rj(t))(αk +Rk(t))

∫ x2

x1

e−i
(x−j)2−(x−k)2

4t

x− j
T (t, x) dx.

The summation holds only for j 6= k, as for j = k the contribution is null. Moreover, from
(11) we have ‖{Rj(t)}‖l1 = O(tγ), γ > 1/2, so

T (t, x1)− T (t, x2) = O(
√
t)− 2ℑ

∑

j 6=k

ei(|αj |2−|αk|2) log
√
tαjαke

i j
2−k2

4t

∫ x2

x1

ei
(j−k)x

2t

x− j
T (t, x) dx.

To get decay in time we need to perform again an integration by parts:

T (t, x1)−T (t, x2) = O(
√
t)−


2ℑ

∑

j 6=k

ei(|αj |2−|αk|2) log
√
tαjαke

i j
2−k2

4t
ei

(j−k)x
2t

x− j

2t

i(j − k)
T (t, x)



x2

x1

+4tℜ
∑

j 6=k

ei(|αj |2−|αk|2) log
√
tαjαk

ei
j2−k2

4t

j − k

∫ x2

x1

ei
(j−k)x

2t

(
1

x− j
T (t, x)

)

x

dx

= O(
√
t) + 4tℜ

∑

j 6=k

ei(|αj |2−|αk|2) log
√
tαjαk

ei
j2−k2

4t

j − k

∫ x2

x1

ei
(j−k)x

2t
1

x− j
Tx(t, x) dx.

From (55) we have Tx = ℜ(uN) so finally

T (t, x1)− T (t, x2) = O(
√
t) + 4tℜ

∑

j 6=k

ei(|αj |2−|αk|2) log
√
tαjαk

ei
j2−k2

4t

j − k

×
∫ x2

x1

ei
(j−k)x

2t

x− j
ℜ


∑

r

ei|αr|2 log
√
t(αr +Rr(t))

e−i
(x−r)2

4t√
t

N(t, x)


 dx = O(

√
t).
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Therefore in view of (64) we have indeed

T (0, x1)− T (0, x2) = 0.

�

4.6. Recovering self-similar structures through self-similar paths. In this subsec-
tion we shall use the results in [25] that characterize all the selfsimilar solutions of BF and
give their corresponding asymptotics (see Theorem 1 in [25]).

Let us denote by A±
|αk| ∈ S2 the directions of the corner generated at time t = 0 by the

canonical self-similar solution χ|αk|(t, x) of the binormal flow of curvature |αk|√
t
:

A±
|αk| := ∂xχ|αk|(0, 0

±).

We recall also that the frame of the profile (i.e. χ|αk|(1)) satisfies the system

(65)

{
∂xT|αk |(1, x) = ℜ(|αk|e−ix

2

4 N|αk|(1, x)),

∂xN|αk|(1, x) = −|αk|ei
x2

4 T|αk|(1, x),

and that for x→ ±∞ there exist B±
|αk| ⊥ A±

|αk|, with ℜ(B±
|αk|),ℑ(B

±
|αk |) ∈ S2, such that

(66) T|αk|(1, x) = A±
|αk| +O(

1

x
), ei|αk|2 log |x|N|αk|(1, x) = B±

|αk| +O(
1

|x|).

Lemma 4.3. Let tn be a sequence of positive times converging to zero. Up to a subsequence,
there exists for all x ∈ R a limit

(T∗(x), N∗(x)) = lim
n→∞

(T (tn, k + x
√
tn), e

i|αk |2 log
√
tnN(tn, k + x

√
tn)),

and there exists a unique rotation Θk such that

(67)





T∗(x) = Θk(T|αk|(x)),
ℜ(eiArgαkN∗(x)) = Θk(ℜ(N|αk|(x))),
ℑ(eiArgαkN∗(x)) = Θk(ℑ(N|αk|(x))).

Moreover, for x→ ±∞

(68) T∗(x) = Θk(A
±
|αk |) +O(

1

|x|), ei|αk|2 log |x|eiArg(αk)N∗(x) = Θk(B
±
|αk|) +O(

1

|x| ).

Proof. Let tn be a sequence of positive times converging to zero. We introduce for x ∈ R
the functions

(Tn(x), Nn(x)) = (T (tn, k + x
√
tn), e

i|αk |2 log
√
tnN(tn, k + x

√
tn)).

This sequence is uniformly bounded. In view of (55) and (56) we have

T ′
n(x) =

√
tnℜ(uN)(tn, k + x

√
tn)

= ℜ(
∑

j

ei|αj |2 log
√
tn(αj +Rj(tn))e

−i
(k+x

√
tn−j)2

4tn N(tn, k + x
√
tn)),
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and

N ′
n(x) = −ei|αk|2 log

√
tn
√
tn(uT )(tn, k + x

√
tn)

= −
∑

j

ei(|αk |2−|αj |2) log
√
tn(αj +Rj(tn))e

i
(k+x

√
tn−j)2

4tn T (tn, k + x
√
tn).

Therefore the sequence (T ′
n(x), N

′
n(x)) is also uniformly bounded. These two facts give via

Arzela-Ascoli’s theorem the existence of a limit in n (of a subsequence, that we denote
again (Tn(x), Nn(x))):

∃ lim
n→∞

(Tn(x), Nn(x)) =: (T∗(x), N∗(x)).

Moreover, as ‖{Rj(tn)}‖l1 = o(n) we can write

T ′
n(x) = ℜ(

∑

j

ei|αj |2 log
√
tnαje

−i
(k+x

√
tn−j)2

4tn N(tn, k + x
√
tn)) + o(n)Nn(x)

= ℜ(αke
−ix

2

4 Nn(x)) + ℜ(fn(x)Nn(x)) + o(n)Nn(x),

where

fn(x) =
∑

j 6=k

ei(|αj |2−|αk|2) log
√
tnαje

−ix
2

4
+ix j−k

2
√

tn
−i

(k−j)2

4tn .

For a test function ψ ∈ C∞
c (R) we have by integrating by parts, avoiding in case a region

os size o(n) around x = 0,

〈fn(x), ψ(x)〉 =
∫ ∑

j 6=k

ei(|αj |2−|αk|2) log
√
tnαje

−ix
2

4
+ix j−k

2
√

tn
−i

(k−j)2

4tn ψ(x) dx

= −
∫ ∑

j 6=k

ei(|αj |2−|αk|2) log
√
tnαj2

√
tn
e
ix j−k

2
√

tn
−i (k−j)2

4tn

i(j − k)
(e−ix

2

4 ψ(x))x dx = C(ψ)o(n).

Similarly we obtain

N ′
n(x) = −αke

ix
2

4 Tn(x) + gn(x)Tn(x) + o(n)Tn(x),

with gn = o(n) in the weak sense. Therefore (T∗(x), eiArg(αk)N∗(x)) satisfies system (65)
in the weak sense. As the coefficients involved in the ODE are analytic we conclude
that (T∗(x), eiArg(αk)N∗(x)) satisfies system (65) in the strong sense, as (T|αk|(x), N|αk |(x))
does. Therefore there exists a unique rotation Θk such that (67) holds. We obtain (68) as
a consequence of (66). �
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4.7. Recovering the curvature angles of the initial data.

Lemma 4.4. Let k ∈ Z. Then, with the notations of the previous subsection,

T (0, k±) = Θk(A
±
|αk|).

In particular, in view of (3) and (51) we recover that χ(0) is a polygonal line with corners
at the same locations as χ0, and of same angles.4

Proof. Let ǫ > 0. In view of (68) we first choose x > 0 large enough such that

|T∗(x)−Θk(A
+
|αk ||) ≤

ǫ

3
,

and that C(1+|k|)
x ≤ ǫ

3 , where C is the coefficient in (60). Then we choose n large enough

such that |x√tn| < 1
2 and that |T (tn, k + x

√
tn) − T∗(x)| ≤ ǫ

3 . The last fact is possible in
view of Lemma 4.3. Finally, we have, in view of Lemma 4.2 and (60):

|T (0, k+)−Θk(A
+
|αk|)| = |T (0, k + x

√
tn)−Θk(A

+
|αk|)|

≤ |T (0, k+ x
√
tn)−T (tn, k+ x

√
tn)|+ |T (tn, k+ x

√
tn)− T∗(x)|+ |T∗(x)−Θk(A

+
|αk|)| ≤ ǫ,

so

T (0, k+) = Θk(A
+
|αk|).

Similarly we show by taking x < 0 that

T (0, k−) = Θk(A
−
|αk|).

�

The lemma insures us that χ(0) has corners at the same locations as χ0, and of same
angles. To recover χ0 up to rotation and translations we need to recover also the torsion
properties of χ0.

4.8. Trace and properties of modulated normal vectors. In order to recover the
torsion angles we shall need to get informations about N(t, x) as t goes to zero. For x /∈ Z
we denote the modulated normal vector

(69) Ñ(t, x) = eiΦ(t,x)N(t, x),

where

(70) Φ(t, x) =
∑

j

|αj |2 log
|x− j|√

t
.

We start with a lemma insuring the existence of a limit for Ñ(t, x) at t = 0, with a

convergence decay of selfsimilar type
√
t

d(x,Z) for x close to Z.

4 This also implies that the rotation Θk does not depend on the choice of the sequence tn.
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Lemma 4.5. Let 0 < t1 < t2 < 1. For x /∈ 1
2Z we have

(71) |Ñ(t2, x)− Ñ(t1, x)| ≤ C(1 + |x|)
√
t2

(
1

d(x, 12Z)
+

1

d(x,Z)

)
,

while if x ∈ 1
2Z\Z then

(72) |Ñ(t2, x)− Ñ(t1, x)| ≤ C(1 + |x|)
√
t2.

In particular for any x /∈ Z there exists a trace for the modulated normal vector at t = 0:

∃ lim
t→0

Ñ(t, x) =: Ñ(0, x).

Moreover for any x ∈ Z there exists a trace

(73) ∃ lim
t→0

e
i
∑

j 6=x |αj |2 log |x−j|√
t N(t, x),

with a rate of convergence upper-bounded by C(1 + |x|)
√
t.

Proof. In view of (58) and (54) we have

Ñ(t2, x)− Ñ(t1, x) =

∫ t2

t1

(
−iux T + i

( |u|2
2

− M

2t

)
N + iΦtN

)
eiΦdt

=

∫ t2

t1


−i

∑

j

e−i|αj |2 log
√
t(αj +Rj(t))

ei
(x−j)2

4t√
t

i
(x− j)

2t
T (t, x)

+i
∑

j 6=k

e−i(|αj |2−|αk|2) log
√
t(αj +Rj(t))(αk +Rk(t))

ei
(x−j)2−(x−k)2

4t

2t
N(t, x) + iΦtN(t, x)


 eiΦdt.

We can integrate by parts in the first term to get

Ñ(t2, x)− Ñ(t1, x) =

=


∑

j 6=x

e−i|αj |2 log
√
t(αj +Rj(t))

ei
(x−j)2

4t√
t

(− 4t2

i(x− j)2
)
(x− j)

2t
T (t, x)



t2

t1

−2i

∫ t2

t1

∑

j 6=x

ei
(x−j)2

4t

x− j
(
√
te−i|αj |2 log

√
t(αj +Rj(t))T (t, x)e

iΦ)tdt

+i

∫ t2

t1

(
∑

j 6=k

e−i(|αj |2−|αk|2) log
√
t(αj+Rj(t))(αk +Rk(t))

ei
(x−j)2−(x−k)2

4t

2t
N(t, x)+ΦtN(t, x))eiΦdt.

Having in mind the expression (57) for Tt we obtain

Ñ(t2, x)− Ñ(t1, x) = O(

√
t2

d(x,Z)
)
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−2i

∫ t2

t1

∑

j 6=x

ei
(x−j)2

4t

x− j

√
te−i|αj |2 log

√
t(αj +Rj(t))

×ℑ(
∑

k

ei|αk |2 log
√
t(αk +Rk(t))

e−i
(x−k)2

4t√
t

(−ix− k

2t
)N(t, x)eiΦdt

+i

∫ t2

t1

(
∑

j 6=k

e−i(|αj |2−|αk|2) log
√
t(αj+Rj(t))(αk +Rk(t))

ei
(x−j)2−(x−k)2

4t

2t
N(t, x)+ΦtN(t, x))eiΦdt.

The integrals are in 1
t . By writing ℑ(−iz) = − z+z

2 in the first integral, we have terms

ei
(x−j)2−(x−k)2

4t or ei
(x−j)2+(x−k)2

4t , both oscillant except for the first one, in case j = k or
2x = j+ k. For x /∈ 1

2Z we perform integrations by parts in all terms, except in case j = k

for the first integral, that allow for a gain of t2 minus at worse terms involving Nt that are
in 1

t
√
t
:

Ñ(t2, x)− Ñ(t1, x) = O((1 + |x|)
√
t2(

1

d(x, 12Z)
+

1

d(x,Z)
))

+i

∫ t2

t1

∑

j

|αj +Rj(t)|2
2t

NeiΦ +ΦtN(t, x)eiΦdt.

In view of the decay of {Rj(t)} and the expression (70) of the phase Φ we obtain (71).

We are left with the case x ∈ 1
2Z. The computations goes as above, with some extra

non-oscillant terms that actually calcel:

Ñ(t2, x)− Ñ(t1, x) = O((1 + |x|)
√
t2

+i

∫ t2

t1

∑

j 6=x,k;j+k=2x

e−i(|αj |2−|αk|2) log
√
t(αj +Rj(t))(αk +Rk(t))

x− k

x− j

N(t, x)

2t
eiΦdt

+i

∫ t2

t1

∑

j 6=x,k;j+k=2x

e−i(|αj |2−|αk|2) log
√
t(αj +Rj(t))(αk +Rk(t))

N(t, x)

2t
eiΦdt.

+i

∫ t2

t1

∑

j 6=x

|αj +Rj(t)|2
2t

NeiΦ +ΦtN(t, x)eiΦdt = O((1 + |x|)
√
t2.

�

Next we shall prove that Ñ(0, x) is piecewise constant.

Lemma 4.6. Let n ∈ Z and x1, x2 ∈ (n, n + 1). Then

Ñ(0, x1) = Ñ(0, x2).

Moreover, the same statement remains valid for x1, x2 ∈ (n− 1, n+ 1) if αn = 0.



37

Proof. From Lemma 4.5 we have

(74) Ñ(0, x1)− Ñ(0, x2) = lim
t→0

(Ñ (t, x1)− Ñ(t, x2)).

In view of (56) we compute

Ñ(t, x1)− Ñ(t, x2) =

∫ x2

x1

(−uT (t, x) + iΦxN(t, x))eiΦ dx

=

∫ x2

x1

(−
∑

j

e−i|αj |2 log
√
t(αj +Rj(t))

ei
(x−j)2

4t√
t

T (t, x) + iΦxN(t, x))eiΦ dx.

The integral is well defined, and In view of the decay of {Rj(t)} we have

Ñ(t, x1)−Ñ (t, x2) = O(
√
t)+

∫ x2

x1

(−
∑

j

e−i|αj |2 log
√
tαj

ei
(x−j)2

4t√
t

T (t, x)+iΦxN(t, x))eiΦ dx.

If we are in the case x1, x2 ∈ (n − 1, n + 1) and αn = 0, the phase x − j can vanish on
(x1, x2) only for j = n but in this case the whole term vanishes as αn = 0. In the case
(x1, x2) ∈ (n, n+ 1) the phase x− j 6= 0 cannot vanish on (x1, x2). Therefore to get decay
in time we integrate by parts:

Ñ(t, x1)− Ñ(t, x2) = O(
√
t) +


−

∑

j

e−i|αj |2 log
√
tαj

ei
(x−j)2

4t√
t

4t

2i(x− j)
T (t, x)eiΦ



t2

t1

+

∫ x2

x1

∑

j

e−i|αj |2 log
√
tαj

2
√
t

i
ei

(x−j)2

4t (
1

x− j
T (t, x)eiΦ)x + iΦxN(t, x)eiΦ dx.

In view of formula (55) for the derivative Tx and the expression (70) of Φ(t, x) we get

Ñ(t, x1)− Ñ(t, x2) = O(
√
t)

+i

∫ x2

x1

(−2
∑

j

e−i|αj |2 log
√
tαje

i
(x−j)2

4t
1

x− j
ℜ(
∑

j

ei|αk|2 log
√
tαke

−i
(x−k)2

4t N(t, x))+ΦxN(t, x))eiΦ dx

= O(
√
t)+i

∫ x2

x1

(−
∑

j,k

e−i(|αj |2−|αk|2) log
√
tαjαke

i (x−j)2−(x−k)2

4t
1

x− j
N(t, x)+ΦxN(t, x))eiΦ dx

−i
∫ x2

x1

∑

j,k

e−i(|αj |2+|αk|2) log
√
tαjαke

i (x−j)2+(x−k)2

4t
1

x− j
N(t, x)eiΦ dx.

In the first integral the terms with j = k cancel with the ones from Φx. In the second
integral the phase (x− j)2 +(x− k)2 does not vanish as (x1, x2) does not contain integers,
so we can integrate by parts, use the expression (56) for Nx and gain a

√
t decay in time.

We are left with

Ñ(t, x1)− Ñ(t, x2) = O(
√
t)
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−i
∫ x2

x1

∑

j 6=k

e−i(|αj |2−|αk|2) log
√
tαjαke

i
(x−j)2−(x−k)2

4t
1

x− j
N(t, x)eiΦ dx.

If n± 1
2 /∈ (x1, x2) the phase (x− j)2− (x−k)2 does not vanish, so again we can perform an

integration by parts to get the decay in time. If n+ 1
2 ∈ (x1, x2) ⊂ (n, n+ 1) we split the

integral into three pieces : (x1, n+ 1
2 −

√
t), (n+ 1

2 −
√
t, n+ 1

2 +
√
t) and (n+ 1

2 +
√
t, x2).

On the middle segment, of size 2
√
t we upper-bound the integrant by a constant. On the

extremal segments we perform an integration by parts, that gives a power
√
t as

1

|(x− j)2 − (x− k)2| ≤
C

d(2x,Z)
.

The cases when n± 1
2 ∈ (x1, x2) ⊂ (n− 1, n+ 1) are treated similarly. Therefore

Ñ(t, x1)− Ñ(t, x2) = O(
√
t),

and in view of (74) we get the conclusion of the Lemma. �

We end this section with a lemma that gives a link between Ñ(0, k±) and the rotation
Θk from Lemma 4.3.

Lemma 4.7. Let tn be a sequence of positive times converging to zero, such that

(75) ei
∑

j |αj |2 log(
√
tn) = 1.

Using the notations in Lemma 4.3 we have the following relation:

Θk(B
±
|αk|) = e−i

∑
j 6=k |αj |2 log |k−j| eiArg(αk) Ñ(0, k±).

Proof. Let ǫ > 0. We choose x > 0 large enough such that in view of (68)

(76) |ei|αk|2 log |x| eiArg(αk)N∗(x)−Θk(B
+
|αk|)| ≤

ǫ

4
,

and such that

(77)
C(1 + |k|)

x
≤ ǫ

4
,

where C is the coefficient in (71). Then we choose n large enough such that |x√tn| < 1
2

and such that

(78) |e−i
∑

j 6=k |αj |2 log |x
√
tn+k−j| − e−i

∑
j 6=k |αj |2 log |k−j| ≤ ǫ

4
,

and

(79) |ei|αk|2 log
√
tnN(tn, k + x

√
tn)−N∗(x)| ≤

ǫ

4
.

The last fact is possible in view of Lemma 4.3. Therefore we have, in view of Lemma 4.6 :

I := |e−i
∑

j 6=k |αj |2 log |k−j| eiArg(αk) Ñ(0, k+)−Θk(B
+
|αk|)|

= |e−i
∑

j 6=k |αj |2 log |k−j| eiArg(αk) Ñ(0, k + x
√
tn)−Θk(B

+
|αk|)|

≤ |Ñ(0, k + x
√
tn)− Ñ(tn, k + x

√
tn)|
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+|e−i
∑

j 6=k |αj |2 log |k−j| eiArg(αk) Ñ(tn, k + x
√
tn)−Θk(B

+
|αk|)|.

By using the convergence (71) of Lemma 4.5 together with (77), and the definition (69) of

Ñ we get

I ≤ ǫ

4
+ |e−i

∑
j 6=k |αj |2 log |k−j| eiArg(αk) e

i
∑

j |αj |2 log |x√tn+k−j|√
tn N(tn, k + x

√
tn)−Θk(B

+
|αk|)|.

In view of (78) and (75) we have

I ≤ 2ǫ

4
+ |eiArg(αk) ei|αk|2 log |x|e−i

∑
j 6=k |αj |2 log(

√
tn)N(tn, k + x

√
tn)−Θk(B

+
|αk|)|

=
ǫ

2
+ |eiArg(αk) ei|αk|2 log |x|ei|αk|2 log(

√
tn)N(tn, k + x

√
tn)−Θk(B

+
|αk|)|.

Finally, by (79)

I ≤ 3ǫ

4
+ |eiArg(αk) ei|αk |2 log |x|N∗(x)−Θk(B

+
|αk |)|,

and we conclude by (76) that
I ≤ ǫ,∀ǫ > 0,

thus
Θk(B

+
|αk|) = e−i

∑
j 6=k |αj |2 log |k−j| eiArg(αk) Ñ(0, k+).

For x < 0 we argue similarly to get

Θk(B
−
|αk|) = e−i

∑
j 6=k |αj |2 log |k−j| eiArg(αk) Ñ(0, k−).

�

4.9. Recovering the torsion of the initial data. Recall that in §4.2 we have denoted
by {xn, n ∈ L} the ordered set of the integer corner locations of χ0 and by {θn, τn, δn}n∈L
the sequence determining the curvature and torsion angles of χ0. Lemma 4.4 insured us
that χ(0) has corners at the same locations as χ0, and of same angles. Let us denote

{θn, τ̃n, δ̃n}n∈L the correspondent sequence of χ(0). To recover χ0 up to rotation and

translations we need to recover also the torsion properties of χ0, i.e. τ̃n = τn and δ̃n = δn.
In §4.2 we have defined the torsion parameters in terms of the vectorial product of two

consecutive tangent vectors, and in view of the way the tangent vectors of χ(0) are described
in Lemma 4.4, we are lead to investigate vectorial products of type Θk(A

−
|αk | ∧A

+
|αk|). We

start with the following lemma.

Lemma 4.8. For a > 0 there exists a unique φa ∈ [0, 2π) such that

A−
a ∧A+

a

|A−
a ∧A+

a |
= ℜ(eiφaB+

a ) = −ℜ(e−iφaB−
a ).

Proof. For simplicity we drop the subindex a. We recall from (66) that the tangent vectors
of the profile χ(1) have asymptotic directions the unitary vectors A± that can be described
in view of formula (11) in [25] as

A+ = (A1, A2, A3), A− = (A1,−A2,−A3).
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This parity property for the tangent vector implies similar parity properties for normal and
binormal vectors and from (66) we also get

B+ = (B1, B2, B3), B− = (B1,−B2,−B3).

In particular we have

A− ∧A+

|A− ∧A+| =
1√

1−A2
1

(0,−A3, A2),

so

(80)
A− ∧A+

|A− ∧A+| .B
+ =

1√
1−A2

1

(A3B2 −A2B3) = − A− ∧A+

|A− ∧A+| .B
−.

Since B+ ⊥ A+ and ℜB+,ℑB+, A+ is an orthonormal basis of R3, we have a unique
φ ∈ [0, 2π) such that

A− ∧A+

|A− ∧A+| = cosφℜB+ + sinφℑB+ = ℜ(e−iφB+),

thus the first inequality in the statement. The second inequality follows from (80). �

We continue with some useful information on the connection between quantities involving
normal components at two consecutive corners of χ(0). Recall that we have defined αk = 0
if k /∈ {xn, n ∈ L} and if k = xn for some n ∈ L we have defined αk ∈ C by (51) and (52).
In particular two consecutive corners are located at xn and xn+1, and the corresponding
information is encoded by αxn and αxn+1 .

Lemma 4.9. Let tn be a sequence of positive times converging to zero, such that the hypoth-
esis (75) of Lemma 4.7 holds. We have the following relation concerning two consecutive
corners located at xn and xn+1:

Θxn(B
+
|αxn |) = eiβn eiArg(αxn )−Arg(αxn+1 )Θxn+1(B

−
|αxn+1 |

),

where

βn = (|αxn |2 − |αxn+1 |2) log |xn − xn+1|.
Proof. The result is a simple consequence of Lemma 4.7 and Lemma 4.6. �

Now we shall recover in the next lemma the modulus and the sign of the torsion angles
of χ0.

Lemma 4.10. The torsion angles of χ(0) and χ0 coincide:

τ̃n = τn, δ̃n = δn, ∀n ∈ L.

Proof. From the definition (50) we have

cos(τ̃n) =
T (0, x−n ) ∧ T (0, x+n )
|T (0, x−n ) ∧ T (0, x+n )|

.
T (0, x−n+1) ∧ T (0, x+n+1)

|T (0, x−n+1) ∧ T (0, x+n+1)|
.
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Now we use Lemma 4.4:

cos(τ̃n) = Θxn

(
A−

|αxn | ∧A
+
|αxn |

|A−
|αxn |

∧A+
|αxn |

|

)
.Θxn+1



A−

|αxn+1 |
∧A+

|αxn+1 |

|A−
|αxn+1 |

∧A+
|αxn+1 |

|


 .

By using Lemma 4.8 we write

cos(τ̃n) = Θxn

(
ℜ(eiφ|αxn |B+

|αxn |)
)
.Θxn+1

(
−ℜ(eiφ|αxn+1 |B−

|αxn+1 |
)
)

= −ℜ
(
Θxn(e

iφ|αxn |B+
|αxn |)

)
.ℜ
(
Θxn+1(e

iφ|αxn+1 |B−
|αxn+1 |

)
)
.

Finally, by Lemma 4.9 we get

cos(τ̃n) = −ℜ
(
eiφ|αxn |+iβn+i(Arg(αxn )−Arg(αxn+1 ))Θxn+1(B

−
|αxn+1 |

)
)

.ℜ
(
Θxn+1(e

iφ|αxn+1 |B−
|αxn+1 |

)
)
.

Since ℜB−
|αxn+1 |

and ℑB−
|αxn+1 |

are unitary orthogonal vectors, we obtain

cos(τ̃n) = − cos(φ|αxn | + βn +Arg(αxn)−Arg(αxn+1)− φ|αxn+1 |).

Therefore, by definition (52) of {Arg(αj)} we get

cos(τ̃n) = cos(τn),

and in particular τ̃n = τn.
Similarly, we compute

T (0, x−n ) ∧ T (0, x+n )
|T (0, x−n ) ∧ T (0, x+n )|

∧ T (0, x−n+1) ∧ T (0, x+n+1)

|T (0, x−n+1) ∧ T (0, x+n+1)|

= −Θxn+1(ℜB−
|αxn+1 |

)∧Θxn+1(ℑB−
|αxn+1 |

) sin(φ|αxn |+βn+Arg(αxn)−Arg(αxn+1)−φ|αxn+1 |).

As ℜ(B−
|αxn+1 |

) ∧ ℑ(B−
|αxn+1 |

) = A−
|αxn+1 |

, in view of Lemma 4.4 we get

T (0, x−n ) ∧ T (0, x+n )
|T (0, x−n ) ∧ T (0, x+n )|

∧ T (0, x−n+1) ∧ T (0, x+n+1)

|T (0, x−n+1) ∧ T (0, x+n+1)|

= −T (0, x−n+1) sin(φ|αxn | + βn +Arg(αxn)−Arg(αxn+1)− φ|αxn+1 |),

so by definition (52) of {Arg(αj)} we conclude δ̃n = δn. �
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4.10. End of the existence result proof. From Lemma 4.4 and Lemma 4.10 we conclude
that χ(0) and χ0 have the same characterizing sequences {θn, τn, δn}n∈L. In view of the
definition of this sequence in §4.2 we conclude that χ(0) and χ0 coincide modulo a rotation
and a translation. This rotation and translation can be removed by changing the initial
point P and frame (v1, v2, v3) used in the construction of χ(t) in §4.3. Therefore we have
constructed the curve evolution in Theorem 1.1 for positive times. The extension in time
is done by using the time reversibility of the Schrödinger equation and the one of the
binormal flow, that means solving for positive times the binormal flow with initial data
χ(−s), which is still a polygonal line satisfying the hypothesis.

4.11. Further properties of the constructed solution. In this last subsection we
describe the trajectories in time of the R3−locations of the corners, χ(t, k).

Lemma 4.11. Let k such that αk 6= 0, that is a location of corner for χ0. Then there
exists two orthogonal vectors v1, v2 ∈ S2 such that

χ(t, k) = χ(0, k) +
√
t (v1 sin(M log

√
t) + v2 cos(M log(

√
t)) +O(t).

Proof. From (59) and the decay of {Rj(τ)} we have

χ(t, k)− χ(0, k) =

∫ t

0
ℑ(uN(τ, k)) dτ

= ℑ
∫ t

0

∑

j

ei|αj |2 log
√
τ (αj +Rj(τ))

e−i
(k−j)2

4τ√
τ

N(τ, k) dτ

= ℑ
∫ t

0

∑

j

ei|αj |2 log
√
ταj

e−i (k−j)2

4τ√
τ

N(τ, k) dτ +O(t
1
2
+γ).

In the terms with j 6= k we perform an integration by parts to get decay in time

χ(t, k)− χ(0, k) = ℑ
∫ t

0
ei|αk|2 log

√
ταkN(τ, k)

dτ√
τ
+O(t

1
2
+γ)

+


ℑ
∑

j 6=k

ei|αj |2 log
√
ταj

e−i (k−j)2

4τ√
τ

4τ2

i(k − j)2
N(τ, k)



t

0

−ℑ
∫ t

0

∑

j 6=k

4αj
e−i

(k−j)2

4τ

i(k − j)2
(ei|αj |2 log

√
ττ

√
τ N(τ, k))τ dτ.

The boundary term is of order O(t
√
t). In view of (58) we get a 1

τ
√
τ
estimate for Nτ so

the last term is of order O(t), and we have

χ(t, k)− χ(0, k) = ℑ
∫ t

0
ei|αk|2 log

√
ταkN(τ, k)

dτ√
τ
+O(t).
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Now, from (73) in Lemma 4.5 we get the existence of w1, w2 ∈ S2 such that

w1 + iw2 = lim
t→0

e−i
∑

j 6=k |αj |2 log
√
tN(t, k),

with a rate of convergence upper-bounded by C(1 + |k|)
√
t. This implies

χ(t, k)− χ(0, k) = ℑαk (w1 + iw2)

∫ t

0
ei

∑
j |αj |2 log

√
τ dτ√

τ
+O(t),

and thus the conclusion of the Lemma.
�
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