565 research outputs found

    Transients in the Synchronization of Oscillator Arrays

    Get PDF
    The purpose of this note is threefold. First we state a few conjectures that allow us to rigorously derive a theory which is asymptotic in N (the number of agents) that describes transients in large arrays of (identical) linear damped harmonic oscillators in R with completely decentralized nearest neighbor interaction. We then use the theory to establish that in a certain range of the parameters transients grow linearly in the number of agents (and faster outside that range). Finally, in the regime where this linear growth occurs we give the constant of proportionality as a function of the signal velocities (see [3]) in each of the two directions. As corollaries we show that symmetric interactions are far from optimal and that all these results independent of (reasonable) boundary conditions.Comment: 11 pages, 4 figure

    Stability Conditions for Coupled Autonomous Vehicles Formations

    Full text link
    In this paper, we give necessary conditions for stability of coupled autonomous vehicles in R. We focus on linear arrays with decentralized vehicles, where each vehicle interacts with only a few of its neighbors. We obtain explicit expressions for necessary conditions for stability in the cases that a system consists of a periodic arrangement of two or three different types of vehicles, i.e. configurations as follows: ...2-1-2-1 or ...3-2-1-3-2-1. Previous literature indicated that the (necessary) condition for stability in the case of a single vehicle type (...1-1-1) held that the first moment of certain coefficients of the interactions between vehicles has to be zero. Here, we show that that does not generalize. Instead, the (necessary) condition in the cases considered is that the first moment plus a nonlinear correction term must be zero

    Diffusion and consensus on weakly connected directed graphs

    Get PDF
    Let GG be a weakly connected directed graph with asymmetric graph Laplacian L{\cal L}. Consensus and diffusion are dual dynamical processes defined on GG by x˙=−Lx\dot x=-{\cal L}x for consensus and p˙=−pL\dot p=-p{\cal L} for diffusion. We consider both these processes as well their discrete time analogues. We define a basis of row vectors {γˉi}i=1k\{\bar \gamma_i\}_{i=1}^k of the left null-space of L{\cal L} and a basis of column vectors {γi}i=1k\{\gamma_i\}_{i=1}^k of the right null-space of L{\cal L} in terms of the partition of GG into strongly connected components. This allows for complete characterization of the asymptotic behavior of both diffusion and consensus --- discrete and continuous --- in terms of these eigenvectors. As an application of these ideas, we present a treatment of the pagerank algorithm that is dual to the usual one. We further show that the teleporting feature usually included in the algorithm is not strictly necessary. This is a complete and self-contained treatment of the asymptotics of consensus and diffusion on digraphs. Many of the ideas presented here can be found scattered in the literature, though mostly outside mainstream mathematics and not always with complete proofs. This paper seeks to remedy this by providing a compact and accessible survey.Comment: 19 pages, Survey Article, 1 figur

    Piecewise Linear Models for the Quasiperiodic Transition to Chaos

    Full text link
    We formulate and study analytically and computationally two families of piecewise linear degree one circle maps. These families offer the rare advantage of being non-trivial but essentially solvable models for the phenomenon of mode-locking and the quasi-periodic transition to chaos. For instance, for these families, we obtain complete solutions to several questions still largely unanswered for families of smooth circle maps. Our main results describe (1) the sets of maps in these families having some prescribed rotation interval; (2) the boundaries between zero and positive topological entropy and between zero length and non-zero length rotation interval; and (3) the structure and bifurcations of the attractors in one of these families. We discuss the interpretation of these maps as low-order spline approximations to the classic ``sine-circle'' map and examine more generally the implications of our results for the case of smooth circle maps. We also mention a possible connection to recent experiments on models of a driven Josephson junction.Comment: 75 pages, plain TeX, 47 figures (available on request

    Shear-induced aggregation and break up of fibril clusters close to the percolation concentration

    Get PDF
    To probe the behaviour of fibrillar assemblies of ovalbumin under oscillatory shear, close to the percolation concentration, cp (7.5%), rheo-optical measurements and Fourier transform rheology were performed. Different results were found close to cp (7.3%), compared to slightly further away from cp (6.9 and 7.1%). For 6.9 and 7.1%, a decrease in complex viscosity, and a linear increase in birefringence, n, with increasing strain was observed, indicating deformation and orientation of the fibril clusters. For 7.3%, a decrease in complex viscosity was followed by an increase in complex viscosity with increasing strain, which coincided with a strong increase in n, dichroism, n, and the intensity of the normalized third harmonic (I3/I1). This regime was followed by a second decrease in complex viscosity, where n,n and I3/I1 decreased. In the first regime where the viscosity was decreasing with increasing strain, deformation and orientation of existing clusters takes place. At higher oscillatory shear, a larger deformation occurs and larger structures are formed, which is most likely aggregation of the clusters. Finally, at even higher strains, the clusters break up again. An increase in complex viscosity, n, n and I3/I1 was observed when a second strain sweep was performed 30 min after the first. This indicates that the shear-induced cluster formation and break up are not completely reversible, and the initial cluster size distribution is not recovered after cessation of flow

    Path finding on a spherical self-organizing map using distance transformations

    Get PDF
    Spatialization methods create visualizations that allow users to analyze high-dimensional data in an intuitive manner and facilitates the extraction of meaningful information. Just as geographic maps are simpli ed representations of geographic spaces, these visualizations are esssentially maps of abstract data spaces that are created through dimensionality reduction. While we are familiar with geographic maps for path planning/ nding applications, research into using maps of high-dimensional spaces for such purposes has been largely ignored. However, literature has shown that it is possible to use these maps to track temporal and state changes within a high-dimensional space. A popular dimensionality reduction method that produces a mapping for these purposes is the Self-Organizing Map. By using its topology preserving capabilities with a colour-based visualization method known as the U-Matrix, state transitions can be visualized as trajectories on the resulting mapping. Through these trajectories, one can gather information on the transition path between two points in the original high-dimensional state space. This raises the interesting question of whether or not the Self-Organizing Map can be used to discover the transition path between two points in an n-dimensional space. In this thesis, we use a spherically structured Self-Organizing Map called the Geodesic Self-Organizing Map for dimensionality reduction and the creation of a topological mapping that approximates the n-dimensional space. We rst present an intuitive method for a user to navigate the surface of the Geodesic SOM. A new application of the distance transformation algorithm is then proposed to compute the path between two points on the surface of the SOM, which corresponds to two points in the data space. Discussions will then follow on how this application could be improved using some form of surface shape analysis. The new approach presented in this thesis would then be evaluated by analyzing the results of using the Geodesic SOM for manifold embedding and by carrying out data analyses using carbon dioxide emissions data

    In vitro drug sensitivity of normal peripheral blood lymphocytes and childhood leukaemic cells from bone marrow and peripheral blood.

    Get PDF
    In vitro drug sensitivity of leukaemic cells might be influenced by the contamination of such a sample with non-malignant cells and the sample source. To study this, sensitivity of normal peripheral blood (PB) lymphocytes to a number of cytostatic drugs was assessed with the MTT assay. We compared this sensitivity with the drug sensitivity of leukaemic cells of 38 children with acute lymphoblastic leukaemia. We also studied a possible differential sensitivity of leukaemic cells from bone marrow (BM) and PB. The following drugs were used: Prednisolone, dexamethasone, 6-mercaptopurine, 6-thioguanine, cytosine arabinoside, vincristine, vindesine, daunorubicin, doxorubicin, mafosfamide (Maf), 4-hydroperoxy-ifosfamide, teniposide, mitoxantrone, L-asparaginase, methotrexate and mustine. Normal PB lymphocytes were significantly more resistant to all drugs tested, except to Maf. Leukaemic BM and PB cells from 38 patients (unpaired samples) showed no significant differences in sensitivity to any of the drugs. Moreover, in 11 of 12 children with acute leukaemia of whom we investigated simultaneously obtained BM and PB (paired samples), their leukaemic BM and PB cells showed comparable drug sensitivity profiles. In one patient the BM cells were more sensitive to most drugs than those from the PB, but the actual differences in sensitivity were small. We conclude that the contamination of a leukaemic sample with normal PB lymphocytes will influence the results of the MTT assay. The source of the leukaemic sample, BM or PB, does not significantly influence the assay results

    Polydispersity and ordered phases in solutions of rodlike macromolecules

    Full text link
    We apply density functional theory to study the influence of polydispersity on the stability of columnar, smectic and solid ordering in the solutions of rodlike macromolecules. For sufficiently large length polydispersity (standard deviation σ>0.25\sigma>0.25) a direct first-order nematic-columnar transition is found, while for smaller σ\sigma there is a continuous nematic-smectic and first-order smectic-columnar transition. For increasing polydispersity the columnar structure is stabilized with respect to solid perturbations. The length distribution of macromolecules changes neither at the nematic-smectic nor at the nematic-columnar transition, but it does change at the smectic-columnar phase transition. We also study the phase behaviour of binary mixtures, in which the nematic-smectic transition is again found to be continuous. Demixing according to rod length in the smectic phase is always preempted by transitions to solid or columnar ordering.Comment: 13 pages (TeX), 2 Postscript figures uuencode
    • …
    corecore