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Abstract

Spatialization methods create visualizations that allow users to analyze high-dimensional

data in an intuitive manner and facilitates the extraction of meaningful information.

Just as geographic maps are simplified representations of geographic spaces, these

visualizations are esssentially maps of abstract data spaces that are created through

dimensionality reduction. While we are familiar with geographic maps for path plan-

ning/finding applications, research into using maps of high-dimensional spaces for

such purposes has been largely ignored.

However, literature has shown that it is possible to use these maps to track tem-

poral and state changes within a high-dimensional space. A popular dimensionality

reduction method that produces a mapping for these purposes is the Self-Organizing

Map. By using its topology preserving capabilities with a colour-based visualization

method known as the U-Matrix, state transitions can be visualized as trajectories on

the resulting mapping. Through these trajectories, one can gather information on

the transition path between two points in the original high-dimensional state space.

This raises the interesting question of whether or not the Self-Organizing Map can be

used to discover the transition path between two points in an n-dimensional space.

In this thesis, we use a spherically structured Self-Organizing Map called the

Geodesic Self-Organizing Map for dimensionality reduction and the creation of a

topological mapping that approximates the n-dimensional space. We first present

an intuitive method for a user to navigate the surface of the Geodesic SOM. A new

application of the distance transformation algorithm is then proposed to compute

the path between two points on the surface of the SOM, which corresponds to two

points in the data space. Discussions will then follow on how this application could
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be improved using some form of surface shape analysis. The new approach presented

in this thesis would then be evaluated by analyzing the results of using the Geodesic

SOM for manifold embedding and by carrying out data analyses using carbon dioxide

emissions data.
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Chapter 1

Introduction

Various technologies today are advancing at a rapid and alarming rate. Consequently,

data that is being acquired is becoming significantly more complicated to analyze

and understand. This has led to a greater demand for sophisticated data analysis

techniques that extract knowledge about a system, environment or phenomena that

is hidden within complex data. Data mining is one such method that inherently allows

users to explore and analyze large quantities of data to discover meaningful patterns

or rules through automatic or semi-automatic means [1]. This process is valuable to

users as patterns and rules that were not obvious to users can be discovered. A typical

data mining process generates a model of the domain of interest, allowing predictions

to be made on the domain. This allows better ways of handling data to be discovered

while also supporting future decision making.

Olaru and Wehenkel [2] argue that the reasons for the increasing interest towards

data mining are due to:

• the emergence of very large amounts of data, which could, for example, result

from automated data collection

• decreasing cost of mass storage devices

• advances in computer technology

• developments in automatic learning techniques
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• possible presence of uncertainty in data, such as noise and missing information

This increasing interest has resulted in large variety of applications for data min-

ing, ranging from market basket analysis [3] to fraud detection [4]. Although there is

great interest in data mining as a promising solution with numerous potential bene-

fits, data mining applications are said to focus too much on the underlying algorithms

[5, 6]. Furthermore, such products have only been suitable for statisticians and expert

analysts. It has also been argued that application design should be more user-centred

and that visualization may aid non-expert analysts in detecting and understanding

the extracted information [7]. Moreover, visualization allows users to process the

data more quickly, which is vital in time-critical situations where decisions need to be

made based on overwhelmingly large amounts of data. The events that occurred dur-

ing September 11, 2001 highlighted the need for tools that would meet these demands,

resulting in an emerging field known as visual analytics.

1.0.1 Visual analytics

Visual analytics is defined as the “science of analytical reasoning facilitated by inter-

active visual interfaces” [8]. Visual analytics tools enable analysts to gain insight into

massive amounts of data that are often dynamic and conflicting. Information about

the data that is already obvious should be detected by these tools, as well as other

details that may not be expected. This multidisciplinary field requires research into

various techniques for:

• Analytical reasoning: to allow users to obtain insights that would support the

processes of assessment, planning and decision making.

• Visual representation and interaction: which can translate abstract data into

a visible form that enables users to perceive, explore, and understand large

amounts of information all at once.

• Data representation and transformation: for converting all types of data to a

representation suitable for visualization and analysis.
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• Production, presentation and dissemination of the results: which aids in com-

municating the results of an analysis to a variety of audiences in meaningful

ways.

One field of research that is closely related to all of these areas is information

visualization, whose techniques can represent and summarize a large amount of data

using a relatively small amount of display space. Patterns and trends can therefore

be recognized more easily, enabling users to make decisions based on this information.

1.0.2 Information visualization

Information visualization has provided many useful techniques for users to analyze

high dimensional data. These techniques all generate an image of some sort, using

various visual features, such as colour and size, to convey meaningful information

about data and their attributes. Moreover, some information visualization systems

integrate the user into the process of data exploration by providing interaction capa-

bilities.

Despite the recent efforts in automated data mining techniques, visualization still

provides great benefits for the purpose of exploratory data analysis. Visualization

techniques have the ability to deal with non-homogeneous and noisy data. Further-

more, users are not required to have knowledge of complex mathematical algorithms.

With the different types of data that exist, visualization techniques can be clas-

sified according to the data type that needs to be visualized. Six categories of data

have been identified by Keim [9]:

1. One-dimensional data: which usually has one dense dimension, such as temporal

data.

2. Two-dimensional data: which consists of two distinct dimensions. A prime

example is geographical data.

3. Multidimensional data: which can be described by more than three attributes

and thus can not be easily visualized. Tables from relational databases are an

example of such data.
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4. Text: which can not be easily described by numbers and visualized using stan-

dard visualization techniques. Transformations are often applied first before

using such techniques.

5. Graphs and hierarchies: pieces of data may be related to each other. Graphs

and hierarchies are able to depict such relationships.

6. Algorithms and software: large software projects are difficult to manage. Vi-

sualization can support the process of software development by aiding users in

understanding algorithms, such as the flow of data in a program.

Another method of classifying visualization techniques is based on the different

approaches used to generate the visualization, namely (1) space-filling, (2) graph

drawing and (3) spatialization. Space-filling approaches aim to utilize as much of the

display space as possible to eliminate navigation issues that may cause users to be

lost in the data [10]. One notable technique is the Tree-Map [11], which attempts to

utilize the entire 2D display space to map hierarchical information. This is achieved

by partitioning the display space into rectangular areas, with each node being mapped

to a rectangle. Despite the efforts made to make the technique more effective [12, 13],

the Tree-Map algorithm is primarily used for the display of hierarchical structures,

such as a file directory, and when size is the most important feature to be displayed.

The mosaic plot [14] is another space-filling technique that represents multiway

contingency tables by tiles whose size is proportional to the cell frequency, in a similar

fashion to a stacked bar graph. These rectangles are laid out in a mosaic, hence the

name of the algorithm. Figure 1.1 displays a mosaic plot of the Titanic data set [15].

For the plots to be informative to users though, they are required to be well-trained

in interpreting mosaic plots. Experiments have shown that when more than two

variables are involved, the plot becomes more confusing and misleading [16]. This is

a prime example that illustrates how techniques that aim to achieve a high utilization

of the display space may create visualizations that are confusing and difficult to

interpret.

Graph drawings are used to model relational information; that is, the relationships

between data elements [17]. A graph of an email transaction network that models
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Figure 1.1: A conventional mosaic plot of Titanic data that was depicted in Figure
1 in [16] (used with kind permission of Springer Science and Business Media). The
data consists of 2201 samples described by four attributes: class (1st/2nd/3rd/crew),
gender (male/female), age (adult/child) and survived (yes/no).

the transfer of emails between clients and servers is depicted in Figure 1.2. The data

elements are represented by the nodes in the graph, while relationships are represented

by the edges between nodes. A typical graph drawing reveals the topology of the

data in a pictorial forum. This allows users to interactively explore the relationships

present in the data and insight into the structure of the phenomena being observed

may gained. Unfortunately, graph drawings also suffer readability problems due to

the features of the layout, such as size, and the extremely large amount of visible

elements (nodes, edges, labels and colours) that are being displayed, even though

there are techniques that may help avoid visual overload [18, 19]. These elements are

mainly processed by short-term memory where capacity is limited and information is

lost/forgotten quickly.

Finally, spatialization methods aim to visualize various features of the data in

the form of spatial dependencies. Fuchs and Schumann [21] also argue that spatial



6 CHAPTER 1. INTRODUCTION

Figure 1.2: A graph of an email transaction network from [20] ( c©[2007] IEEE). Red
nodes represent servers, while yellow nodes represent clients. Green and blue edges
are used to distinguish between sending and receiving emails. The red node in the
centre represents the main email server.

dependencies that are assumed to be non-existant by other techniques can be visu-

alized along with the abstract, multivariate data. This relies on the use of spatial

metaphors that exploit human spatio-cognitive skills for the exploration and analysis

of non-geographic information [22]. As a result of spatializing the data, map-like visu-

alizations are produced. Since nearly everyone has interacted with geographic maps

through early education or everyday use of different maps (such as street directories

or weather maps), users should be more familiar with such visualizations.

Regardless of the goals of these techniques and the various data types, researchers

in the area of information visualization are ultimately faced with the challenge of

creating intuitive visualizations that are easy to understand, allowing the data to be

processed by the user more quickly, and interaction techniques that enables users to

extract hidden and meaningful information that may be critical in various ways.
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1.1 Motivation

Our society has been using maps as tools for exploration for a long period of time.

Once a map is created, a simplified representation of some space can be obtained. This

in turn reduces the complexity of discovering pathways within the space of interest.

However, maps are not just used for geographical data, and the association between

map metaphors and information visualization can be traced back to the 19th century

[23]. This is an area of great relevance to this research, since information visualization

techniques can be used to create maps of an abstract data space.

Various organizations also rely on what is known as roadmaps for the description

of plans that require transitions from one state to another to arrive at a clearly defined

goal. Such organizations or companies will often make decisions in the context of all

previous decisions. These can be viewed as transition paths in an abstract knowledge

space. Hence, if maps can be used to represent an abstract knowledge space, a path

on these maps would correspond to transition paths in the knowledge space.

It would therefore be of great interest to study the usage of maps to spatialize

multidimensional data onto a two-dimensional or three-dimensional space for the

research presented in this thesis. These spatial visualizations are intuitive to users as

concepts such as distance and direction are used to construct map-like visualizations.

Moreover, most users should be familiar with geographic maps as our society relies on

maps for activities such as exploration. The geographic maps that we often interact

with are used to create simplified depictions of geographic spaces while attempting

to preserving aspects such as area, distances and topological relationships. Map-like

visualizations have a similar purpose by performing dimensionality reduction on a

high-dimensional space while preserving certain characteristics of the data, such as

the topology.

Although path finding is often applied to geographic maps to discover how to

travel from one location to another, its applications to spatial visualizations have

largely been ignored. Past research has shown that once data has been spatialized,

temporal and state changes may be tracked through the use of maps. These changes

would correspond to the movement of a data point in the original high-dimensional
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space. Since spatial representations are, in principle, amenable to spatial analysis

techniques, it follows that path finding techniques would be applicable to maps of

high-dimensional spaces for discovering paths within the data space.

With the recent efforts on applying cartographic perspectives on non-geographic

visualization [21, 22], it would be worth investigating the application of techniques

that have typically been used on geo-referenced data to non-geographic data. Auto-

mated computational techniques should be used to perform these tasks, which can

discover alternative and better paths that would otherwise remain hidden. Users could

then gain more insight into the state transitions of an object or process. Research

into a suitable method to achieve this objective though, would require a number of

clearly defined goals to be met.

1.2 Project Goals

This project aims to investigate the use of information visualization methods and

geometrical path planning methods to assist the process of decision making. This

will involve discovering pathways in a high-dimensional feature space. In order to

achieve this aim, the following goals will need to be completed:

• The selection of a suitable spatialization method for creating a map-like visu-

alization of high-dimensional data.

• An investigation on how multidimensional path planning can be achieved once

a data set has been spatially visualized through the use of a suitable technique.

• A study on the application of distance transformations to assist the path plan-

ning process using the resulting two-dimensional representation.

• An evaluation of the results to determine if the paths discovered on map-like

visualizations are useful.

Above all, there must be some significance to our research, which would be of

interest to the research community.
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1.3 Contributions

There are several contributions from this research that give it some significance and

distinguish it from previous work. They include:

• A critical assessment of past and related work: this will involve a review of

various techniques for generating map-like visualizations and path planning

methods. During this process, advantages and disadvantages of the different

techniques will be made apparent.

• A proposal on how to perform path planning on visualized data: based on

the results of the review, a suitable visual representation and path planning

technique will be selected to provide a way for users to explore high-dimensional

spaces using a two-dimensional map.

• A new application for the distance transformation algorithm: the distance trans-

formation algorithm has primarily been used for image processing and robot

motion planning. The results of our research will show that not only can the

algorithm be used on grid maps representing a digital image or a robot’s en-

vironment, but can also be applied on map-like visualizations describing an

abstract data space.

• A new application for the Self-Organizing Map: although the main goal of this

research is to assist the decision making process, a notable contribution has

been made in the area of manifold embedding. Through experiments, it will

be shown that the (Geodesic) Self-Organizing Map combined with the distance

transformation algorithm, computes a path that attempts to approximate the

geodesic path between two points on a manifold. Furthermore, these paths

would allow users to gain an understanding on how the set of points on the

manifold are connected for manifold reconstruction.
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1.4 Thesis Structure

In this chapter, a small overview of what the research presented in this thesis involves

and the motivation behind it has been discussed. In the chapters to follow, the

background relevant to the research, new proposed methods and an evaluation of the

results will be covered. Thus, the structure of the thesis will be as follows:

• Chapter 2 will provide a critical assessment of various spatialization methods.

This will be followed by a review of popular path finding algorithms. All of this

would culminate in the selection of a suitable method for generating a map of

a high-dimensional space and a method to perform path planning on the map.

• Chapter 3 will review the methods that could be used to navigate the Geodesic

SOM in order to get a better view of the visualized data.

• Chapter 4 will contain detailed information on performing path finding on maps

of a high-dimensional space. This will involve the application of distance trans-

formations to the Geodesic SOM. Here, the following will be discussed (a) key

concepts, (b) important points about previous work relevant to this thesis, (c)

reasons for using distance transformations and (d) a detailed explanation of the

proposed approach.

• Chapter 5 will address the problem that can be seen in the results in Chapter 4.

A modification to the proposed method in the previous chapter will be presented

to deal with cases where the path between two points in the same cluster would

travel outside the data space.

• Evaluations of the proposed methods using data sets of various manifolds will

then be provided in Chapter 6.

• Chapter 7 will evaluate the proposed methods on socio-demographic data.

• Chapter 8 will conclude this thesis and discuss the overall results that can be

gathered from this research. This will then be followed by a discussion on the

future direction that this research will follow.



Chapter 2

Background

2.1 Introduction

Advances in computing technology and the decreasing cost of mass storage devices

has allowed massive amounts of data to be collected. This has led to a demand for

automated methods to be developed that can handle and use such data. Data mining

is one approach that a user can employ to achieve this. The knowledge discovery

from databases (KDD) process distills the information obtained from data mining

into knowledge, ideas or beliefs that can be used for decision making. However,

visualization can significantly improve the process of exploratory data analysis by

mapping the data to visual variables, which allow users to quickly gain insight into

the data. This has generated a lot of interest in information visualization, where

researchers have realized the benefits of using spatial metaphors to take advantage of

human spatio-cognitive skills [22].

In this chapter, a review of the previous research in these areas that is relevant to

the work presented in this thesis will be covered. In the process of doing so, a critical

assessment of various techniques to create maps of multidimensional data will be

conducted to determine the most suitable technique for the purpose of this research.

Since some of the data spaces dealt with may actually be manifolds, a review of

manifold learning techniques will be provided. This will be followed by a review of

path planning techniques that would be applicable to the chosen data representation.
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2.2 Spatialization methods

Tobler’s First Law of Geography [24] is an influential principle that has been the

premise behind most of the work done by geographers. It states that:“everything

is related to everything else, but near things are more related than distant things”

[24]. Geographic maps have thus been designed to preserve distance and/or topo-

logical relationships as much as possible while also creating a simplified depiction

of some geographic space. Users then rely on their spatio-cognitive skills to explore

these geographic spaces. The realization that these spatio-cognitive skills can be

valuable in the exploration and analysis of non-geographic information has led to the

emergence of spatial metaphors for information visualization [22]. Skupin also argues

that visualizations with coordinate axes that reflect on all the input dimensions are

more map-like [25]. Such visualizations would be more familiar to users and this

has given rise to the development of techniques for generating map-like visualizations

of non-geographic data that perform dimensionality reduction and preserve certain

characteristics of the information space. These are typically two-dimensional visu-

alizations, which eliminate navigation problems that occur with three-dimensional

information spaces [26, 27, 28, 29].

With the relatively recent emergence of map-like visualizations for non-geographic

information, one could easily be (mis)led to believe that the value of using spatial/map

metaphors has only been realized in recent times. On the contrary, maps have been

envisioned for the exploration of unknown information terrain back in the 19th century

[23]. Furthermore, the application of metaphors, in general, results in a mapping from

a familiar, source domain Ds to a target domain Dt. Actions that are applicable in

domain Ds may therefore be applicable to domain Dt [30, 31]. This realization led

to the successful linking between spatial metaphors and geographic concepts, where

it has been argued that geographic concepts may help users perform cognitive tasks

[32]. Hence, it would be worth investigating the significance of performing tasks that

have usually been associated with geographic maps on map-like visualizations.

One task that some geographic maps, such as street maps, are typically used for is

discovering the (shortest) path between two locations. This would require taking into
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account the existence of any structures in the geographic space. Although empirical

investigations on the cognitive role of distance (the distance-similarity metaphor) for

non-geographic information visualization have been carried out [33], no research has

been conducted to discover what knowledge can be gained by performing this task

on maps of non-geographic data. The most commonly used methods to generate

such maps are multidimensional scaling, principal components analysis and the Self-

Organizing Map. These techniques should be reviewed in order to select a suitable

data representation for this research.

2.2.1 Multidimensional scaling

Multidimensional scaling (MDS) is a set of methods that is used to measure similari-

ties or dissimilarities in the data, which can be visualized in the form of a geometrical

picture. While its origins lie in psychometrics, where multidimensional scaling was

first proposed to help people judge the similarities of objects [34], it has also been

used in a diverse range of fields such as physics and marketing [35]. The goal of

multidimensional scaling is to find an optimal configuration of points based on some

measure of similarity. Two similar objects are then represented by two points close

together in this space, while two dissimilar objects are represented by two points

that are far apart. In other words, when trying to create a mapping for data items,

these methods attempt to retain the spatial relationships between data items. The

similarity measures used by these techniques are either qualitative or quantitive and

are used to classify MDS techniques into two categories: non-metric MDS and metric

MDS respectively [36].

Metric MDS techniques attempt to preserve distances between objects. Given an

n×n distance matrix D, whose elements are the distances dij between a pair of high-

dimensional points xi and xj, metric MDS aims to find a configuration of points in a

low-dimensional space such that the difference between its Euclidean distance matrix

and the distance matrix D is minimized. This is identical to principal components

analysis (PCA) (also known as the Karhunen-Love or Hotelling transform) [37], which

is the most popular metric MDS technique. Through the use of an orthogonal linear



14 CHAPTER 2. BACKGROUND

transformation, PCA can transform a data set to a new coordinate system. However,

metric MDS techniques require the data to be metric so that distances can be derived

from the dissimilarities and are therefore not equipped to deal with ordinal-scale data.

This has motivated the need for non-metric MDS techniques [38] [39], which ap-

proximate a nonlinear transformation of the dissimilarities in the data. These tech-

niques typically try to minimize some sort of cost function and the cost function is

what differentiates the various non-metric MDS techniques from each other. While

these nonlinear methods perform quite well for lower dimensional data, performance

rapidly decreases as the dimensionality of the data increases. Moreover, MDS tech-

niques only focus on finding an optimal configuration of points based on some criteria.

The maps would therefore be described by a discrete set of points and are not contin-

uous, unlike geographic maps. A comparative analysis [40] has shown that a neural

network algorithm, known as the Self-Organizing Map [41], generates maps that are

easier to interpret and better clustered, and may outperform other methods for high-

dimensional data.

2.2.2 Self-Organizing Map

The Self-Organizing Map (SOM) [41] is one of the most popular and widely used

artificial neural network algorithms that can be used to visualize data. The SOM

consists of an array of units (neurons) that are typically arranged on a rectangular

or hexagonal grid. Each unit in the SOM is associated with two-dimensional screen

coordinates that can be used for visualization, and a parametric real vector wi that has

the same dimensions as the input vectors. In this thesis, these vectors will be referred

to as weight vectors. Before training the SOM, these values are usually randomly

initialized. During the training process, input vectors are presented to the SOM and

the best matching unit (BMU) is then selected. This is usually done by extensively

calculating which unit’s weight vector is closest to the input vector according to some

(typically Euclidean) distance function. Once the BMU c is found, the input vector

is mapped to that unit’s sublist of data points. The values of the weight vectors of

the units in the neighbourhood set of c are then adjusted so that they are closer to
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the values of the input vector as follows:

wi(t+ 1) = wi(t) + hci(t)[x(t)− wi(t)] (2.1)

where wi is the ith weight vector, hci is the neighbourhood function, x is the input

vector and t is a variable in the discrete time index. Typical implementations of the

SOM apply a Gaussian neighbourhood function such that the further a unit in the

neighbourhood set is from the centre, the less its weight vector values will be adjusted:

hci(t) = α(t).exp(−||rc − ri||
2

2σ2(t)
) (2.2)

where α(t) is the learning rate of scalar value, and σ(t) is the neighbourhood ra-

dius. Both of these are monotonically decreasing values, while ri denotes the location

(screen coordinates) of unit i on the map grid.

This process is applied to the all input vectors and the SOM is usually trained

over a large number of epochs until convergence is reached. Additional visualization

techniques such as the U-Matrix [42], P-Matrix [43] or Smoothed Data Histograms

[44] can then be applied to further aid the user in understanding the structure of the

high-dimensional data through visual inspection. The U-Matrix is the most commonly

used technique, which visualizes the local distances in high-dimensional space, known

as U-heights, in the form of a landscape or colour. Given a unit i and the set of its

immediate neighbours N(i), its U-height uhi is defined by the following equation:

uhi =
1

n
Σ
j
d(wi, wj), jεN(i), n = |N(i)| (2.3)

These U-height values can then be used directly as height values for three-dimensional

visualization. A colour-based visualization on the other hand, would use these U-

height values to assign each unit a colour through the use of a lookup table. For

instance, given a lookup table of length n (that is, there are n colours), the U-height

values can first be normalized between the range of 1 and n. The result is then

rounded off to the nearest integer and used as an index value to search the lookup

table to assign a colour.
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The SOM is recognized for having the characteristics of (1) being able to preserve

topology in the data, (2) the capability to generalize data (since the weight vectors

tend to approximate the probability function of the input vectors), (3) performing

multidimensional scaling and (4) unsupervised clustering. Furthermore, they are able

to mimic human cognitive mappers well [45].

One of the first applications of the SOM other than the study of neuroscience was

in speech recognition [46]. Since then, the SOM has been greatly appreciated in other

areas and applications. Li was one of the first to integrate the SOM with geographic

information systems (GIS). Since then, studies on the application of the SOM for

geospatial data analysis have been particularly lacking. However, one notable excep-

tion has been the work carried out on the GeoVISTA project [47], resulting in new

forms of SOM visualizations that were devised by Takatsuka [48]. In order to per-

form temporal analysis with census data, he proposed two methods that were used,

for example, to analyze gentrification in Harrisburg, Pennsylvania over three decades:

1. Chronological cluster analysis: where each decade is represented by a different

SOM. The movement of gentrification over these three decades is studied by

analyzing the location of the tracts relative to each other on the SOMs for the

1970, 1980 and 1990 data in chronological order.

2. Temporal cluster analysis: where a single SOM is used to represent the data for

all three decades. The gentrification phenomenon is observed by tracking the

movement of the tracts over a period of time using the SOM.

Koua also studied the use of the SOM to explore geospatial data [49]. Five different

visualization techniques based on the SOM algorithm were implemented to provide

analysts with different methods for extracting information from large geospatial data

sets. The results showed improvement of geographical analysis and promising signs

that the SOM may be a valuable alternative where conventional techniques fail.

Since the SOM creates maps that preserve the topology of the data, Ultsch states

that such maps can regarded as roadmaps of the data space [50]. Exploiting this

property, the SOM has been used to perform temporal sequence processing. Even
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if time is not considered during the training process, it is still possible to recover

temporal information from the SOM. Given a temporal sequence of feature vectors,

the corresponding BMUs at each point of time t can be located and connected to

form a trajectory.

When combined with other visualization techniques such as the U-Matrix, these

so-called “trajectory-based SOMs” [51] can also be used to visualize state transitions

and have found applications in areas such as speech recognition [46] and process

monitoring [52, 53, 54]. By using the SOM for process modelling, it is possible to

monitor the state transitions of a system through the use of trajectories, since each

cluster on the map corresponds to a certain behaviour. For example, given a SOM

that represents a certain system, faults can be predicted to occur by analyzing a

process’ trajectory on the SOM to see if it is heading toward the region of the SOM

representing the occurrence of various faults [53].

This approach can also be applied when visualizing the financial state of different

companies [55]. Through the use of trajectories, the authors demonstrated that it

is possible to observe the evolution of a bank over a number of years to see if the

bank was entering the bankruptcy zone on the SOM. Such instances would indicate

that the corresponding bank was in danger of going bankrupt, which was confirmed

by the data used. Comparative, statistical analyses have also shown that the SOM

is superior to traditional forecasting tools [56, 57, 58]. Moreover, the problems that

are associated with statistical methods can be overcome, enabling companies to run

tasks such as financial benchmarking [59, 60]. Consequently, the SOM may be uti-

lized as a tool to support strategic management. This could help executives discover

which characteristics would help lead a company to reach and maintain good overall

performance.

Another application for trajectory-based SOMs is the visualization of temporal,

demographic changes within population census data [61]. Takatsuka demonstrated in

his earlier study of the SOM on census data that these changes could be represented

as movement on the surface of the two-dimensional SOM [48]. This involves training

a SOM with data from multiple, different time periods. From there, one can track the

movement of a specific object by determining its location on the SOM at each time
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period. One problem with this approach is that the user is required to visually detect

these changes. Skupin addresses this problem by explicitly visualizing these changes

on top of the SOM through the use of trajectories. For a given object of interest,

its state in each time period is represented by a temporal vertex on the surface of

the SOM. A trajectory is then formed by connecting these vertices in chronological

order. Aspects of change such as parallelism, convergence, and divergence can then

be observed by analyzing the trajectories. Figure 2.1 provides an example where

the SOM can be used to depict cases of parallel development. The figure depicts

the development of four counties (De Witt, Gonzalez, Collingwood and Hall) on the

surface of the SOM through the use of trajectories. De Witt and Gonzales are heading

towards stronger income growth and a higher percentage of employees with a commute

time between 45 and 59 minutes. The trajectories for Collingwood and Hall indicate

a lower percentage of rural farm population while maintaining low population density

and a large percentage of rural population.

Figure 2.1: An example of the SOM being used to investigate cases of parallel devel-
opment in multi-temporal census data (Figure 7 in [61]). This figure has been used
with kind permission from Springer Science and Business Media.

However, there are two important, related flaws that are obvious in current ap-

plications of trajectory-based SOMs that arise when the trajectories formed are not

associated with any distance metric:

1. The inability of analysts to derive from these trajectories a sense of the distance

between two points on the SOM in the feature space.
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2. The possibility for analysts to form a false impression of which trajectory is

actually longer or shorter in the feature space when comparing different trajec-

tories using the SOM.

Nevertheless, it is evident that the SOM in general has a wide applicability to

many areas. Although wide applicability of a visualization technique is highly valued,

another issue that needs to be taken into consideration is its ability to handle large

data sets. With information overload being a critical problem for the World Wide

Web, sophisticated tools are needed to help categorize the information, which could

be used, for example, by search engines. Experiments have shown that the SOM is

capable of categorizing a large Internet information space [62]. Furthermore, the user

study revealed that users liked the visual and graphical aspects of the map generated.

However, the details of the map become much more difficult to see as more categories

are added. This led to further experimentation on the use of the SOM as a means to

browse the World Wide Web [63]. By implementing a fish-eye and fractal view with

the SOM in their prototype, results revealed that these two visualization techniques

increase the effectiveness of the visualization. These applications clearly demonstrate

that the SOM has a very high potential for mining large databases.

There is however, a notorious problem that has been associated with the SOM that

is known as the “border effect”. Due to the fact that neurons at the borders of these

maps have less neighbours, these neurons have a reduced chance of being updated.

This results in a map that appears to be less well-ordered near the borders of the

map. Various suggestions have been made to eliminate the border effect problem.

One of these suggestions is to implement the SOM on a spherical lattice eliminating

the borders from the SOM [64]. Moreover, spherical SOMs are more suitable in

handling directional data. This is a useful characteristic, since the work in this thesis

is concerned with finding paths on map-like visualizations.

2.2.3 Geodesic Self-Organizing Map

After investigating various results from mathematicians and cartographers [65], Takat-

suka and Wu came to the conclusion that an icosahedron-based geodesic dome would
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be most suitable for implementing a spherical SOM [66]. Compared to the other pla-

tonic polyhedra (a tetrahedron, cube, octahedron and dodecahedron), it was observed

to have the least variance in edge lengths after tessellation and resembled a sphere

more than the other polyhedra.

These findings led to the development of the Geodesic Self-Organizing Map (Geodesic

SOM), which maps n-dimensional data onto a geodesic dome. This eliminates the

border effect while also being able to support fast neighbourhood searching on the

2D data structure that uses only O(n) space. This data structure is essentially a two-

dimensional matrix (Figure 2.3) that is obtained by unwrapping the geodesic dome’s

lattice (Figure 2.2) and applying a transformation to it. Neurons on the boundaries

of the data structure will thus have duplicates, which the Geodesic SOM keeps track

of.
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Figure 2.2: The geodesic dome opened.

Through their experiments, the authors showed that assigning two fixed extreme

points on the SOM to be the north and south pole helped to provide a sense of direc-

tion that is helpful in comparing visualizations of different data sets. Furthermore,

this allowed the data elements to be approximately ordered from the north pole to

the south pole. Their belief was that this would aid users in the building of their

mental maps. Analyses have also demonstrated that the Geodesic SOM has a more

uniform error distribution and may have better performance when dealing with large
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Figure 2.3: This figure illustrates the result of applying a transformation to the
unwrapped lattice in the previous figure, creating the Geodesic SOM’s 2D data struc-
ture. Duplicate points exist as a result of unwrapping the lattice. The diagram on
the right side shows how the neighbours of a neuron can be obtained.

data sets [67]. Further work has also shown that the Geodesic SOM can be used to

visualize multivariate networks using a hybrid approach [68]. This approach relies on

the Geodesic SOM for multidimensional scaling and discovering the initial layout of

the vertices in the network. A multivariate network can then be visualized as a graph

on the Geodesic SOM through the use of graph drawing algorithms.

One final matter that needs to be discussed about the Geodesic SOM regards

the issues faced with map design [22] [25]. As data sets become larger and more

complex, more details need to be displayed on the map, which would occur at the

cost of reduced visibility. Since users are only interested in a subset of the map at a

particular point of time, the amount of information to be displayed for each region

on the map can be adjusted with respect to the current area of interest. This can

be achieved through the use of focus and context techniques [21]. Users also have a

natural desire to place the region of interest in the centre of the screen for analysis.

The spherical geometry of the Geodesic SOM addresses both of these points through

its natural fish-eye effect and by allowing users to rotate the spherical visualization.

These advantages are offset by the fact that a user can not get a full view of the entire

data without rotating the 3D surface or projecting it onto a 2D surface. This is one of
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the disadvantages of the Geodesic SOM and other three-dimensional visualizations.

Complementary techniques for interacting and navigating the Geodesic SOM should

therefore be considered and will be covered in detail in the next chapter.

Figure 2.4: An example of a visualization produced by the Geodesic SOM. The arrow
passes through the two extreme points from the south to the north pole. Regions are
labelled with numbers to indicate clustering.

2.3 Manifold learning

Manifolds are topological spaces that are locally Euclidean. If one were to stand at any

point on the manifold, it would appear as though the immediate neighbourhood is flat.

In other words, manifolds can be described by lower-dimensional intrinsic/internal

coordinates. The task of manifold learning is to learn these coordinates, which are

embedded in high-dimensional observation coodinates. This process is interestingly

analogous to dimensionality reduction.

Two popular manifold learning methods are the Isomap [69] and locally linear

embedding (LLE) [70] algorithms. For the Isomap algorithm, a k-nearest neighbour

graph is defined where the vertices are the set of points and the weights of the edges are

the pairwise distances. All the shortest path distances in the graph are computed (for

instance, Dijkstra’s algorithm) and MDS is then used to find a set of point coordinates

that preserves these distance constraints as best as possible. LLE on the other hand

computes weights that would best reconstruct each data point from its k-nearest

neighbours. These weights form a weight matrix W, and the output coordinates X
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are calculated by solving the eigenvalue problem WX = X. These algorithms can

then be used to create a topographic map based on the internal coordinates. For

instance, a topographic map of face images can be created using the azimuth and

elevation parameters of each face image. Figures 2.6 and 2.7 illustrate the results

of applying the Isomap and LLE algorithm on the S-curve manifold (Figure 2.5)

respectively. Source code on the Isomap 1 and LLE 2 homepages provided by the

corresponding authors has been used to generate these visualizations. Both methods

attempt to learn the internal coordinates on the S-curve manifold and the plotting of

these coordinates effectively provides a visualization of an unrolled S-curve.

Figure 2.5: The S-curve manifold.

1http://isomap.stanford.edu/
2http://www.cs.toronto.edu/~roweis/lle/code.html
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Figure 2.6: This example is a visualization of the output produced by the Isomap

algorithm (k = 7) given 2000 sampled points on the S-curve manifold.

Figure 2.7: This example is a visualization of the output produced by the LLE algo-

rithm (k = 12) given 2000 sampled points on the S-curve manifold.

While SOMs can also be used for manifold learning, it has been shown that they

can fail to model a visually obvious structure in the data [69]. However, this problem
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could be overcome if the internal coordinates for each data point (that is described

by observation coordinates) were learnt through the use of other manifold learning

methods beforehand. BMUs would then be calculated using the internal coordinates,

while weight vector adaptation would be done in both the internal and observation

coordinates. This variation of the SOM is known as the M-SOM [71], which shares the

same advantages as the SOM when it comes to summarizing large data sets through

clustering.

2.4 Shortest path problem

In graph theory, the shortest path problem involves finding the path between two

vertices such that the sum of the weights belonging to the edges on the path is

minimized. There are basically three categories of such problems:

1. single-pair shortest path problem: find the shortest path between a pair of

vertices

2. single-source shortest path problem: find the shortest path from a source vertex

to all other vertices

3. all-pairs shortest path problem: find the shortest path between every pair of

vertices

Note that the last two problems are actually generalizations of the single-pair

shortest path problem. Some of the most popular algorithms for solving these prob-

lems to calculate a graph geodesic are Dijkstra’s algorithm [72], the Bellman-Ford

algorithm [73, 74] and the A* search algorithm [75]. However, another popular al-

gorithm that has been used in robot motion planning and image processing is the

distance transformation algorithm [76]. In its basic form, this algorithm is struc-

turally similar to Dijkstra’s algorithm but has the advantage of being able to avoid

certain areas such as obstacles.
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2.4.1 Distance Transformation

The distance transformation algorithm was originally proposed for image processing

[76]. Given a binary image I, which is composed of pixels that have value of either 0

or 1, the algorithm computes a distance map D by propagating distance values. The

pixel value of D(i, j) corresponds to the distance of pixel I(i, j), to the nearest zero

pixel.

Since distance transformations can be used to find the skeleton of images, they

are widely used in pattern recognition applications. For instance, Euclidean distance

transformations can be combined with thinning algorithms to find the skeleton of

handwritten words such as signatures in greyscale images [77]. These skeletons can

then be used for character recognition or signature verification. Other applications for

distance transformations include medical image processing [78], the implementation of

mathematical morphological operations [79, 80, 81] and analyses of multidimensional

data sets [82, 83].

However, the most important application for the algorithm that is relevant to our

research is robot motion planning. By extending the original distance transformation

algorithm so that distances are propagated through the free space around the obsta-

cles, it has been shown that the algorithm was able to solve robot motion planning

problems [84]. These environments are typically represented as a discretized grid map

and as a result of applying the transformation, each cell in the free space is marked

with an integer indicating the minimum amount of steps to the goal. This results in a

complete algorithm that is guaranteed to find an optimal, collision-free path between

any two points provided such a path exists. The distance transformation algorithm is

prominent for discretized grid maps, while A* [75] is commonly used in continuous,

real Euclidean space maps. Figure 2.8 illustrates an example of applying the distance

transformation on a grid map. A path between the start and goal cell can then be

traced by following the steepest descent from the start cell.

Since distance transformations require knowledge of the environment beforehand,

they are classified as global path planners. Local navigation methods, on the other

hand, do not require prior knowledge of the environment. As local navigation methods

can lead to being trapped in a local minima, a combination of local navigation and
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Figure 2.8: An example of distance transformations being used for path planning [85].
The map that needs to be navigated through is presented in (a), with the start and
goal cells marked as S and G respectively. The distance transformation is applied to
compute a distance map as seen in (b). The shortest path between S and G can then
be found by following the steepest descent, as seen in (c)

global path planning methods has been proposed to solve some of these problems.

The distance transformation algorithm could, for instance, be combined with the

potential field method [86]. In this situation, the robot is represented by a point in

configuration space, and becomes a particle under the influence of goal configuration

and obstacle configuration. The resulting gradient of total potential then becomes an

artificial force that is applied on the robot to guide it towards the goal.

Further work with distance transformations has shown that it can even be applied

successfully in unknown environments, where sentries may exist, to discover paths

that would minimize exposure to such sentries [87]. By using quadtrees for cell

decomposition, it is also possible to use the distance transformation algorithm to

find paths in situations where there are multiple goals that are considered equal [88].

This approach has been able to combine the advantages of both high resolution grid-

based and quadtree-based approaches for computing Euclidean shortest paths in a

2D environment.

Due to the nature of these path planning problems, these algorithms are designed

to be fast so that robots can react quickly, especially in dynamic environments. Inter-

estingly, the robot motion planning approach has even been applied to study protein

folding with some success [89]. In this case, the native fold is assumed to be known
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so that the folding process can be studied. Although distance transformations were

not used in these applications, it is interesting to see that techniques for finding a

path from one point to another can be used in complex applications. Furthermore,

using a high level, graph-based approach known as the image foresting transforma-

tion (IFT) [90] allows one to not only implement the distance transformation, but

other image operators such as the watershed transformation, which is used for image

segmentation.

2.5 Summary

In this chapter, spatialization, manifold learning and path planning methods were

closely examined. The advantages and disadvantages of techniques in these areas

were discussed with respect to the research described in this thesis. In the next

chapter, methods for navigating the Geodesic SOM will be discussed to allow analysts

to interact with the visualization in different ways.



Chapter 3

Navigating the Geodesic SOM

The Geodesic SOM’s inherent spherical structure provides a natural fish-eye effect

that allows users to focus on regions of interest by rotating the spherical visualization.

However, its spherical geometry does not permit users to see the entire visualization

unless the geodesic dome is rotated or flattened. Users may thus be lost in the

data when trying to navigate the visualization. Techniques are hence required to

complement these visualizations in order to enhance the way users interact with

them. In this chapter, techniques that could be or have already been applied to the

Geodesic SOM for navigation will be reviewed. This will lead to a proposal that

enhances a previous approach that was used to create a two-dimensional projection

of the Geodesic SOM.

3.1 Background

3.1.1 Portal-based rendering

The concept of portal rendering was first proposed by Jones for hidden-line removal

[91]. The algorithm involves the division of models into convex, polyhedral cells bound

by opaque walls or transparent, convex and polygonal portals. The fundamental idea

behind portal-based rendering is that a room (cell), can only be visible if the “user”

is inside it or if it can been seen through a doorway (portal). Through the process of
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scene decomposition, a Cell and Portal Graph (CPG) can be created, which describes

the adjacency information between cells. In this situation, cells are represented as

nodes, while the edges of the graphs would correspond to portals that connect these

cells. A visible set of cells would then be determined by traversing the CPG from the

cell containing the eye point and following the edges that represent visible portals.

Early work on portal-based rendering concentrated on exact visibility determina-

tion. Later developments provided optimizations to Jones’ original algorithm that re-

sulted in fast visibility determination techniques that would compute what the viewer

could potentially see from the cell they were in. A variation of Jones’ algorithm, for

example, was used to determine Potentially Visible Sets (PVS) in dynamic architec-

tural models at runtime by using the screen-space bounding rectangles of projected

portal geometry [92].

Recently, a general paradigm for portal-based rendering was proposed where the

portals could be non-convex and non-planar [93]. This provides a more flexible frame-

work for dynamic scene composition and more applications where portal-based ren-

dering can be used. In contrast to previous work, this paradigm simply states that

cells contain data that are connected by portals. Moreover, there are no binding

geometric constraints. Meaningful, dynamic and visual links may thus be created

between related data in a visualization environment, such as the the Geodesic SOM.

Novel scene construction is also possible through portal-based rendering, by using

transformative portals.

Portal-based rendering can therefore be used as a generic projection technique

that is applicable to the Geodesic SOM and other three-dimensional closed surfaces

[94]. These surfaces would need to be triangulated such that the cells (the trian-

gles) are connected by transformative portals at each shared edge. This results in a

generic technique for flattening three-dimensional closed surfaces that could easily be

integrated into existing work. Furthermore, the application of this technique can be

used to create what would essentially be virtual worlds of the high-dimensional space.

Users may then explore the world from a first person perspective.

Figure 3.1 depicts the spherical SOM that the user is exploring from a first-person

perspective. The user’s current location is indicated by the white triangle in the figure
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and facing towards the north. A first-person view without the use of transformative

portals is illustrated in Figure 3.2, where it is clear that not much of the surface can

be seen. The results of using transformative portals in this situation is displayed in

Figure 3.3, where more of the surface is visible.

Figure 3.1: A three-dimensional view of the Geodesic SOM. The white triangle is
used to indicate which cell the user is currently located in. Note that the user is
facing towards the north direction.

Figure 3.2: A corresponding first person view for Figure 3.1. Here only non-
transformative portals are used. To measure the visibility, flags have been used,
of which not many can be seen.

This approach is able to preserve the spatial dependencies in the data and can

also be considered as a focus and context technique, since areas that are distant
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Figure 3.3: A first person view from the current location in the Geodesic SOM with
the user in the exact same position in Figure 3.2. Here portal-based rendering is used
with transformations enabled, resulting in a flat surface. Although portal artefacts
can “mask” the distant flags, the results show that more flags are visible. This
indicates that the flat surface allows the greater surface coverage.

from the current area of interest would naturally be distorted. Nevertheless, this

novel technique can not generate a clear, full view of the visualization due to the

limitations of perspective projections.

3.1.2 Projection methods

People are accustomed to rotating three-dimensional objects, such as a globe, in

order to view other areas of an object. Since users need to keep track of areas that

have already been visited, there is the possibility that users may lose track of these

areas and tasks such as rotating objects may be an inconvenience. It would be more

convenient to be able to view the entire object of interest, which would be possible

if such an object was two-dimensional. Through the use of projection methods, two-

dimensional representations of a high-dimensional space may be created. One of the

major areas involved in the development of such techniques is cartography. Through

the use of different mathematical equations, two-dimensional maps of the Earth can

be created. Another approach that relies on computer graphics is multiperspective

imaging. This approach results in an image containing different views of the same

data. The following subsections will elaborate more on these methods.
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Multiperspective imaging

Human perception has long been known to have limitations in its ability to perceive

the world. One of these shortcomings is that we can only see things in front of us due

to our limited field of view. Visually inspecting a 3D object would therefore require

us to rotate it to see the back of the object. However, we can easily overcome this

problem by capturing multiple views of a single object to form a single image. This

has become known as multiperspective imaging [95].

While multiperspective imaging may produce very interesting images, there are a

few drawbacks to using this approach. Undesirable distortions can be introduced and

the combination of multiperspective imaging with ray tracing for 3D scenes results in

poor rendering performance, making it unsuitable in interactive environments [96].

Cartography

The area of cartography has intrigued cartographers, mathematicians and navigators

for over 2500 years [97, 98]. This long period of research has led to the development

of hundreds of map projection techniques for various purposes. Their applications

range from creating maps using large-scale data in a limited area, to a small-scale

map of the world.

Two common methods for classifying map projection techniques are: (1) through

the properties that they attempt to preserve, or (2) the surface used to project the

map onto. If a projection technique is classified by what is known as its developable

surface, they are either conic, cylindrical or planar. All of these techniques project the

points of the spherical object to the surface of the selected geometric shape. These

surfaces are then made flat to produce a 2D map, which requires the cut points on

the surface (if appropriate) to be defined in order to open the surface up. The open

surface would then be laid out to produce a flat map.

On the other hand, there are four types of projections based on the property

being preserved: conformal, equal area, equidistant and true-direction projections.

Conformal projections preserve the local shape of the data by maintaining all angles.

Equal area projections preserve the area of displayed features while compromising
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other properties of the data. Equidistant projections preserve distances between cer-

tain points. Finally, true-direction projections, also known as azimuthal projections,

maintain the directions of all points with respect to the centre. Note that azimuthal

and planar projections refer to the same group of projections.

In order to relate the spherical coordinates on the spherical object to coordinates

on the flat planar object, mathematical formulas are needed. Furthermore, distortions

are unavoidable and occur in either the shape, area, distance or direction of the data.

Various techniques have been designed to minimize certain distortions. The only

projection technique known to have no visible distortions is the Fuller Projection

[99]. However, this technique was designed with the Earth in mind, which needs to

be represented as an icosahedron with 20 faces.

Regarding the Geodesic SOM [66], one of its disadvantages is that a user can not

see the entire visualization at once. This is not an issue with the traditional SOM,

since it is already two-dimensional. Consequently, the authors used the Wagner III

pseudocylindrical projection technique to obtain a two-dimensional, projected map

of the Geodesic SOM. In order to let users define how the Geodesic SOM is to be

projected to 2D, an interface is provided so that users can define the two points that

are necessary for the projection to be done. Users select two points A and B, where

A is the centre of the projection and together with B, defines a plane going through

the centre of the sphere. This is used to determine the north and south poles of

the sphere. The geodesic arc through the two poles is then used as the split line,

which is where the geodesic dome is cut open. This procedure is described in Figure

3.4. Figure 3.5 illustrates an example of what the Geodesic SOM looks like after the

Wagner III pseudocylindrical projection is applied.

The equations used to convert the spherical, longitude and latitude (θ, φ) coordi-

nates to 2D coordinates (x, y) are described below. Here R is the radius of the sphere,

which is 1 in this case, while c = 0.5 and p = 0.5.

x = R
βθ√
αβ

cos (αφ) (3.1)
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Figure 3.4: This diagram depicts how the process of projecting the Geodesic SOM to
2D works. Here users are required to select two points, A and B, in order to define
where the geodesic dome should be cut open to produce a flat map.

Figure 3.5: The Geodesic SOM after the Wagner III pseudocylindrical projection has
been applied. Users are now able to see the entire Geodesic SOM without having to
rotate the original geodesic dome.

y = R
αφ√
αβ

(3.2)

α =
2 arccos c

π
(3.3)

β =
α

2p
(3.4)

The authors cite the reason for using the Wagner III pseudocylindrical projection
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as being able to obtain a “more balanced representation of the spherical map’s main

features”. The disadvantage of their approach however, is that the user may not

obtain a satisfactory projection, since they are unable to tell what the projection

would look like when selecting the two required points beforehand. Moreover, in

order to change the region of interest so that it is located in the centre, the user must

specify a different pair of projection points. Conversely, with the spherical Geodesic

SOM, the user only needs to rotate the visualization.

3.2 Proposal

To combine the advantages of being able to view entire data and change the region of

interest, one possible solution is to create a two-dimensional projection of the Geodesic

SOM that can be “rotated” like the spherical Geodesic SOM. This can be achieved by

creating a new two-dimensional projection when the Geodesic SOM is rotated. This

can be implemented by rendering the Geodesic SOM (Figure 3.6) a certain distance

away from the foreground with the colour mask disabled so that the Geodesic SOM

is invisible. Figure 3.7 describes this rendering configuration. The user’s eyes are

looking toward the image screen that displays the two-dimensional projection of the

Geodesic SOM. Unbeknownst to the user, the invisible, spherical Geodesic SOM is

actually located behind the two-dimensional projection in world space. The spherical

Geodesic SOM is used to compute a two-dimensional projection that is rendered in

front of it.

Two 2D fixed points (A and B in Figure 3.6) are then specified so that the cut

points used to determine the split line are actually the current north and south pole

that the user sees. A projection is then created and rendered in front of where the

Geodesic SOM is located in world space. A new projection would only be created when

the user interacts with it in the same way the spherical Geodesic SOM is rotated.

This process is summarized below (Algorithm 1) and users rotate the projection

by left clicking on a focal point on the SOM and moving the mouse (with the left

mouse button is kept pressed after clicking) in the direction of rotation. Each mouse

movement would trigger the creation of a new projection that is displayed and as a
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Figure 3.6: This image depicts what the Geodesic SOM interface looks like with the
Geodesic SOM visible. The labels A and B indicate the position of the two 2D fixed
points used to determine the split line and create a two-dimensional projection of the
Geodesic SOM.

Figure 3.7: This schematic diagram describes the rendering configuration for cre-
ating a projection of the Geodesic SOM. The user uses their eyes to view the two-
dimensional projection on the image screen. In the three-dimensional world space, the
spherical Geodesic SOM (which is invisible to the user) is located in the far back (with
respect to the direction the eye is looking at) and its corresponding two-dimensional
projection is rendered in front of it.
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result, creates a smooth animation of the rotation process.

Algorithm 1 Navigating the Geodesic SOM.

Require: Two fixed 2D points A and B in screen coordinates
Render Geodesic SOM
if Map projection is not done OR Geodesic SOM is rotated then

Convert points A and B to 3D world coordinates that represent points on the
surface of the dome in world space
Create a new map projection using the converted points as cut points
Map projection is done

end if
Render projection

3.3 Results

In this section, the results of approach proposed above to lets users “rotate” the two-

dimensional projection of the Geodesic SOM is shown. For the experiment, a simple

synthetic data set corresponding to the distance matrix of a binary tree is used to

train the Geodesic SOM. More details on the data set will be discussed in the next

chapter as they are not relevant here. A two-frequency geodesic dome (42 neurons)

is used for training (over 150 epochs) with an initial update radius of 3 and an initial

learning rate of 0.8.

Figure 3.8a depicts the results after training the Geodesic SOM with the data set.

If we assume that the red cluster border is an area of interest to the user, then its

location should ideally be in the centre for the user to focus on. However, Figure 3.8a

illustrates that it is currently located near the border. Consequently, it is difficult to

analyze how the data has been mapped around the red cluster border. This problem

can be solved by creating a new Wagner III projection of the Geodesic SOM as the

user interacts with the spherical Geodesic SOM as proposed above. In this case, the

user must rotate the two-dimensional projection to the left until the red cluster border

is located in the centre of the screen. This results in the map projection depicted in

Figure 3.8b. Since the red cluster border is now in the centre, this makes it easier to

analyze the data located around it.
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Figure 3.8: This image depicts the results of allowing users to interact with the
projected Geodesic SOM. In the original visualization (a), the circled, red region
is located near the edge of the map. To obtain a clearer view of the data mapped
around the red region, the red region should be moved in the left direction so that it is
position in the centre of the map (as indicated by the arrow). The visualization after
the the user has actually rotated the spherical Geodesic SOM (in the background) to
move the red region to the centre is depicted by part (b) of the figure.

3.4 Discussion

In the results above, it is clear the approach that has been proposed enhances the

way users can interact with the Geodesic SOM. The original use of the Wagner III

cartographic projection technique proposed by Wu and Takatsuka [66] created static

maps that would allow users the see the entire visualization. However, if the data

region of interest was not located at a desirable location, users were required to

manually create new map projections until a satisfactory result is obtained. With the

spherical Geodesic SOM, users were able to rotate the geodesic dome until the region

of interested was located in the centre. By creating a new map projection every time

the user rotates the geodesic dome, this allows users analyze the relationships within

the data more easily.

3.5 Summary

The borders present in two-dimensional SOMs creates problems when data analysis

is required. When data samples of interest end up being mapped to the neurons on
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these borders, it is more difficult to analyze how these samples are related to the rest

of the data. Since the Geodesic SOM has no boundaries, more information about

the relationships within the data can be revealed. However, its spherical structure

does not allow users to see the entire visualization at once. While the use of car-

tographic projection techniques can create a corresponding two-dimensional map for

the Geodesic SOM, users are no longer able to rotate the Geodesic SOM to focus on

different regions of the visualization.

In this chapter, a solution for navigating the Geodesic SOM was presented. It

allows users to see the entire visualization while also being able to change the data

region that needs to be focused on through rotation. Since users are able to “rotate”

the projection, it is no longer necessary to continually specify different cut points until

a satisfactory projection is reached. Users are thus able to interact with the projec-

tion using a more intuitive approach that combines the advantages of the spherical

Geodesic SOM and its corresponding two-dimensional projection.

Having discussed the various methods that could be used to navigate the Geodesic

SOM, the next chapter will focus on how to apply path planning techniques to the

Geodesic SOM.



Chapter 4

Path planning on the Geodesic

SOM

In this chapter, the proposal to use the Geodesic SOM with distance transformations

to discover pathways in a high-dimensional space will be presented. The ultimate

objective of this research is to be able to support the process of decision making.

The approach used will be covered in a detailed section. This will be preceded by

an assessment of previous research that is significant to the work presented in this

thesis.

4.1 Introduction

In the editorial of the first Information Visualization (IVS) journal, Chen stated that

“information visualization can be broadly defined as a computer-aided process that

aims to reveal insights into an abstract phenomenon by transforming abstract data

into visual-spatial forms” [100]. By transforming abstract data into a spatial rep-

resentation, these spatial representations would, in principle, be amenable to spatial

analysis techniques. Consequently, there has been a desire to apply geographic notions

and principles to non-geographic information [32, 101]. This may assist in generating

better visualizations of complex data that also have the advantage of being accessible,

since we all have an “instinctive understanding of geographic relationships” [32]. The
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need for users to be trained in making sense of these geographic representations would

thus be minimized. Moreover, metaphors generally help relate two different domains

to each other. They create mappings between a source domain and target domain

such that thoughts and actions applicable in the source domain are also appropriate

in the target domain. Using geographic metaphors can therefore open the door to

using knowledge from the geographic domain.

For example, once data has been spatialized, it is then possible to track temporal

changes in high-dimensional space [55, 61, 102]. This is similar to tracking the move-

ment of a vehicle through the use of a map. The process requires temporal vertices

to be created at each interval of time on the SOM. These vertices represent the state

of the object being tracked at each time interval. A trajectory is then plotted by

connecting these vertices together to depict the object’s movement on the surface of

the SOM.

Although the SOM’s potential in geographic visualization and geocomputation has

been discussed [61, 102], results from trajectory-based SOMs thus far have carried

little actual meaning in the geographic domain. Given a trajectory on a geographic

map that describes the path between two points, it is possible to derive the inter-

mediate points that were reached or would need to be passed through. However,

trajectory-based SOMs in general lack the capabilities that would enable analysts

to gain insight into such information. When visualizing demographic trajectories, it

has been suggested that additional temporal vertices can be inserted to depict the

potential intermediate points [61]. Given two feature vectors corresponding to two

different points in time, the values are linearly interpolated under the assumption

that demographic developments are linear. The BMU for each n-dimensional vector

calculated through linear interpolation is then inserted as an additional temporal ver-

tex. However, there are still problems that have been identified with the approach

used here and trajectory-based SOM applications in general:

• It has been argued that temporal information can be recovered from trajectory-

based SOMs even though the SOM does not have knowledge of the temporal

relations during training [51]. This implies that temporal information has been

lost during this process. However, the “recovery” of this knowledge is merely
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the visualization of all the known relations as trajectories.

• Trajectories on the surface of the SOM may not be indicative of the distance

travelled and the intermediate points passed through in the feature space. Con-

sequently, users can not determine which trajectory is longer or shorter in the

feature space even if additional temporal vertices are inserted to allow analysts

to make more informed judgements about the relationship between trajectories

[61].

• The number of temporal vertices to add through (linear) interpolation is deter-

mined by the user. When finer details are required, this can become a tedious

process for users when the SOM already performs (nonlinear) interpolation on

the data. Although the insertion process can be automated by adding more

temporal vertices until no new neurons are added, problems may arise with this

approach as experiments will show later on.

• Many applications deal with data sets that are structurally nonlinear, where

the use of linear interpolation may not be appropriate.

Figure 4.1 depicts a trajectory that has been plotted using previous approaches

on a 3D heightmap visualization of the SOM. These types of visualizations were em-

ployed by Takatsuka for performing temporal analyses on geospatial data [48]. The

heights of each neuron correspond to the local distances in the high-dimensional space

that is calculated when constructing a U-Matrix. Furthermore, the geodesic distance

between two points on these synthetic 3D surfaces generally correspond to their dis-

tances in the feature space (as mentioned by Takatsuka). Recent studies have shown

that users expect that distances between points on spatializations to correspond to

high-dimensional similarities [33]. However, the approaches used in trajectory-based

SOMs thus far have either ignored or not addressed this point, including the work

by Skupin and Hagelman. Although the form of the trajectories in their work is

derived from cognitive plausibility [103], the comparison of path lengths is actually

ill-advised. The methods that have been used would therefore create trajectories that

are unnatural in the sense that they do not follow the artificial U-Matrix landscape
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and pass through mountain ranges as seen in Figure 4.1. These regions correspond

to large local distances and may potentially be perceived as obstacles that should be

avoided when possible. Suppose there are two trajectories that appear to be parallel

and close to the same length, such as those in Figure 4.1. One trajectory may actually

travel a shorter distance in the feature space, that is, undergo fewer state transitions.

An accurate representation of the path with the shorter distance in the feature space

could, for example, be a trajectory that avoids the mountain range on the artificial

landscape.

Figure 4.1: This figure depicts how trajectories created using methods in past work
would appear on a synthetic 3D surface representing the SOM. Two parallel trajec-
tories are depicted that appear to be of the same length when in actual fact, one
trajectory may have a shorter distance in the data space.

The use of automated computational techniques can address these points by sys-

tematically connecting two temporal vertices and the potential intermediate vertices

between them. This can be achieved by applying path finding algorithms on the

SOM, which is a combination that has previously been suggested for process steering

applications [52]. Geodesic distances on the surface of the SOM can then be com-

puted. Furthermore, such techniques would actually recover temporal information,

since they attempt to determine the intermediate states that were reached.

An important question is raised by applications that involve tracking temporal
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changes. If a map describing an abstract data space can be used to track changes

within this space, can these maps be used to discover the path between two points

in the high-dimensional space? Most people in society are accustomed to using a

map to discover the path between two geographic locations. With the recent efforts

encouraging the use of cartographic and geographic metaphors to non-geographic

visualization, the potential of using map-like visualizations for such purposes is cer-

tainly worth exploring. The utilization of automated computational techniques to

solve these path planning problems could generate alternative pathways that may

otherwise remain hidden and possibly be more optimal. With the analogies between

path planning and decision making, there is the potential that the discovered paths

may aid in the process of decision making. For instance, path finding algorithms

could help steer a process to an optimal state while avoiding any defined forbidden

states that have been marked on the SOM [52].

In order to create maps that spatialize the data and can be used for path finding,

the algorithm used to generate such maps need to be considered. The SOM is a

popular artificial neural network algorithm that is well established and has already

been used in a large number of applications. Furthermore, its ability to produce a

topological mapping of a data space has already been exploited to visualize the state

transitions of an object through the use of trajectories on the surface of the SOM

[55, 104, 61]. If the SOM can be used to track temporal changes in high-dimensional

space, then it could potentially be used to find paths between two points in high-

dimensional space. This would take advantage of the SOM’s ability to approximate

the distribution of the data. Therefore, if a suitable path finding algorithm is used,

the neurons that lie on a path between two points on the SOM could potentially

represent the intermediate states that were reached or need to be reached. These

states can then be derived by analyzing the weight vector values of each intermediate

neuron. According to our knowledge, very little work has been done to take the next

step further to go from tracking paths to finding paths with SOMs of non-geographic

data.

Another problem worth considering is the border effect inherent in traditional

two-dimensional SOMs, which affects the accuracy of the mapping. The Geodesic
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SOM is a variant of the SOM that uses a spherical lattice of neurons to remove

the border effect. It has been shown to have a more uniform error distribution and

the potential for better performance when dealing with large data sets. The latter

point is particularly important as data sets from certain domains can be extremely

large, such as financial data sets concerning the stock exchange. Therefore, it can be

concluded that the SOM is the most suitable technique for generating maps of high-

dimensional data, since it has been demonstrated that they can be used for tracking

temporal changes. Moreover, the Geodesic SOM is the most appropriate variant to

use, which eliminates problems (such as the border effect) that occur when using the

conventional SOM.

4.2 Proposal

In order to reduce the complexity of performing path planning when given multi-

dimensional data, the Geodesic SOM is first used for dimensionality reduction and

visualization. Each neuron is associated with a distance value (initially -1) repre-

senting the shortest distance from that neuron to the goal. However, to compute the

shortest distance between two neurons on the surface of the SOM, a distance metric

must be defined.

The Geodesic SOM is visualized by constructing a U-Matrix. This requires calcu-

lating the local distances in high-dimensional space, which determines the colour used

from a lookup table containing 30 colours. In this case, as the distance increases, the

colours will change linearly from blue to cyan, to yellow, and finally to orange. Gen-

erally speaking, this means that the value of the red colour component will increase.

Takatsuka has pointed out that the geodesic distances on the U-Matrix landscape

could be perceived as the distances in the feature space [48]. The path between two

points on these landscapes could therefore correspond to the path in the original data

space. These landscapes are constructed by using these local distances as height val-

ues for each neuron and are referred to as U-heights [50]. The U-height uh of each

neuron is the average distance of the neuron’s weight vector to the weight values of

its immediate neighbours. The use of U-heights would therefore be appropriate to
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use as distance values and can aid in constructing more accurate trajectories in the

high-dimensional space.

To compute a distance map for path finding using these U-heights, distance trans-

formations are used to propagate distances from one neuron to another. Note that for

diagonal neighbours, the actual value that should be propagated is uh
√

2, according

to Pythagoras’ Theorem. Propagation then begins from the goal neuron, which has

a distance value of zero. As there are duplicate neurons in the Geodesic SOM’s data

structure, when a neuron has its distance value updated, its duplicates will also need

to be updated to have the same value. Fortunately, the Geodesic SOM keeps track

of each neuron’s duplicates, which eliminates the need to search through all the neu-

rons to discover any duplicate neurons that need to be updated. Once the distance

transformation is complete, the path can then be obtained by following the steep-

est descent from the starting neuron. The algorithm itself (Algorithm 2) is similar

to Dijkstra’s algorithm but also has the benefit of be able to discover paths around

obstacles. These obstacles may represent marked, forbidden areas on the SOM as

described by Tryba and Goser [52], who suggested that path finding algorithms could

be use for process steering. Furthermore, the approach presented here is similar to

those used in raster GIS where given a start and end point, an accumulated cost

surface is defined and path finding algorithms can be used to calculated the shortest

path [105].

Since the U-Matrix visualizes the average distance of a neuron to its direct neigh-

bours, the path could in some cases be confirmed to be correct through visual analysis.

For example, if two end points were on opposite sides of the mountain on the U-Matrix

landscape (see Figure 4.1), analysts could determine if the path is visually correct by

seeing if it navigates around the mountain.

4.3 Preliminary results

In order to test how the proposed approach works, it is necessary to run a small

experiment. In this case, a synthetic data set was used which corresponds to a binary

tree of depth 3, where there are a total of 15 nodes in the tree (see Figure 4.2). The
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Algorithm 2 Distance Transformation on the Geodesic SOM

Require: start and goal and Geodesic SOM
Initialization
Queue Q is empty
for all neuron in neurons do

neuron.distance = -1
end for
goal.distance = 0
for all n in goal.sameVerticesList do

n.distance = 0
end for
Q.push(goal)
Start distance transformation
while Q is not empty do

current = pop(Q)
neighbours = getNeighbours(current)
for all neighbour in neighbours do

d = neighbour.uh
√

2
if neighbour.distance == -1 then

neighbour.distance = current.distance + neighbour.avg diff
Q.push(n)

else
if neigbour is a diagonal neighbour and n.distance > current.distance + d
then

neighbour.distance = current.distance + d
Q.push(n)

else
if neighbour.distance > current.distance + neighbour.uh then

neighbour.distance = current.distance + neighbour.uh
Q.push(n)

end if
end if

end if
end for
for all v in neighbour.sameVerticesList do

v.distance = neighbour.distance
end for

end while
End of distance transformation
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data set consists of 15 data samples described by 15 attributes and is essentially the

tree’s 15 x 15 distance matrix. If we denote this distance matrix as M , the value

of M(i, j) corresponds to the graph distance from node i to node j. If the value of

M(i, j) is zero, this means that node i and j are actually the same node.

Figure 4.2: The binary tree used to construct the synthetic data set.

The training parameters were such that a two-frequency geodesic dome was used

(42 nodes), while the initial update radius was set to 3, and the Geodesic SOM was

trained for 150 epochs. The results of calculating paths from the root to all other

nodes are depicted in Figures 4.3 to 4.9. Note that there are two circled red labels

which are 8 and 10. This indicates that there was another node mapped to that same

neuron as well, which are nodes 9 and 11 respectively. This is not a problem since

the clustered nodes share the same parent.

Figure 4.3: The calculated path (1-2-5) from node 1 to 5 on the Geodesic SOM. The

path is correct.
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Figure 4.4: The calculated path (1-2-4-8) from node 1 to 8 on the Geodesic SOM.

The path is correct.

Figure 4.5: The calculated path (1-2-10) from node 1 to 10 on the Geodesic SOM.

The path is incorrect.

Figure 4.6: The calculated path (1-3-6-12) from node 1 to 12 on the Geodesic SOM.

The path is correct.
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Figure 4.7: The calculated path (1-3-6-13) from node 1 to 13 on the Geodesic SOM.

The path is correct.

Figure 4.8: The calculated path (1-3-7-15-14) from node 1 to 14 on the Geodesic

SOM. The path is incorrect.

Figure 4.9: The calculated path (1-3-7-15) from node 1 to 15 on the Geodesic SOM.

The path is correct.
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Figure 4.10: The calculated path (12-13) from node 12 to 13 on the Geodesic SOM.

The path is incorrect as it does not pass through node 6, which is the parent of nodes

12 and 13.

Figure 4.11: The calculated path (8-13) from node 8 to 13 on the Geodesic SOM.

The path is incorrect and also passes through the mountain range.

4.4 Discussion

The results of our experiments show that the majority of the paths that were discov-

ered from the root (node 1) were indeed the correct paths on the binary tree. This

illustrates that applying distance transformations to the Geodesic SOM may reveal

information about the structure of the data through an automated process. One

of the minor incorrect results (Figure 4.5) could be attributed to the fact that the

Geodesic SOM was not able to preserve the topology of the entire data. This may

also be said for most of the incorrect results where the paths did not begin or end

at the root. Paths between nodes that share the same parent may not discover the
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parent between them, as the distances between these nodes may be quite small on

the Geodesic SOM (Figure 4.10).

It can also be seen from the figures that there are some results which are incorrect

by a significant margin (see Figure 4.11 for an example). In these cases, a path

between two points may traverse through regions that represent large distances in

the high-dimensional space; that is, a region containing neurons with large U-height

values. This situation arises as the approximation of the data’s distribution by the

Geodesic SOM has resulted in neurons that represent points outside the data space.

4.5 Summary

In this chapter, a discussion was presented on the use of spatialization methods to cre-

ate visualizations that could be used to track temporal changes within a data space.

Trajectory-based SOMs have commonly been used to achieve this purpose and several

key issues have been identified with the approaches used by trajectory-based SOMs.

The use of the distance transformation algorithm on the Geodesic SOM was presented

to address these problems. The use of the Geodesic SOM removes the border effect

present in two-dimensional SOMs and reveals more information about the relation-

ships within the data. Path finding is then be applied to visualize trajectories on the

trained Geodesic SOM with the aid of distance transformations. Thus, the temporal

lengths of the trajectories are computed without any user intervention. Experimental

results suggest that the trajectories provide more accurate information on the path

travelled in the feature space. However, the preliminary results also show that it is

possible for trajectories to incorrectly pass through regions outside the data space.

This action corresponds to travelling a large distance between cluster boundaries. In

the next chapter, a modification to the approach proposed here will be presented to

alleviate this problem.



Chapter 5

Path planning on the Geodesic

SOM with floodplain analysis

5.1 Introduction

In the previous chapter, we detailed a proposal on the application of distance trans-

formations to the Geodesic SOM to perform path planning. This involved using the

U-heights of each neuron calculated by the U-Matrix as the distance values that need

to propagated. Through this process, the problem of discovering the shortest path

between two points on the Geodesic SOM can be solved.

However, there is a major flaw to this approach that was illustrated by the results

in the previous chapter. In some situations, it was observed that the discovered paths

would pass through the cluster boundaries on the Geodesic SOM when the start and

goal points belong to the same cluster. Due to the SOM’s grid structure, contraction

may occur wherein two dissimilar points may be placed near each other on the SOM.

Consequently, when two close data points that belong to the same cluster are mapped

to opposite sides of a cluster boundary, the geodesic path for these two points may

traverse through the cluster boundary. Furthermore, this region may contain neurons

that represent points outside of the data space. By using the approach that we have

presented to calculate the shortest path, these paths could end up travelling outside

the data space. To ensure that the paths travel within the data space and travel
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around cluster boundaries when appropriate, we propose to discover the flattest,

shortest path.

5.2 Background

Robot motion applications operate in environments that may contain obstacles. Path

planning solutions are thus required to calculate collision-free paths from a starting

location to a goal location such they avoid all obstacles along the way. Moreover, the

paths may also be the optimal path ie. the shortest path.

In the previous chapter, we proposed to find the shortest path on the Geodesic

SOM using the distance transformation algorithm. While this provided a solution

for finding the shortest path on the Geodesic SOM through the use of U-Matrices,

there were paths that travelled through cluster boundaries. For points that belong to

separate clusters, it is natural that the geodesic path would travel through the cluster

boundaries. However, if the points belong to same cluster, then a computed path

should travel around these boundaries. If a landscape metaphor were to be used to

describe the U-Matrix, these cluster boundaries would correspond to mountain ranges

that can be viewed as obstacles that should be avoided. The best route would thus

be one that travels around these mountain ranges if possible.

Moreover, these boundaries may represent regions outside the data space: a region

where no data samples exist. The weight vectors of the SOM tend to approximate

the probability function of the input vectors. All the input vectors essentially form

a cloud of points and the SOM functions like an elastic net (of weight vectors) that

tries to wrap itself around this cloud as much as possible. Thus, this net is a surface

that corresponds to the SOM’s approximation of the probability density function.

However, there is the possibility that the surface might cover regions of the data

space where there are no data samples. This arises from the fact that the SOM

tries to generalize the structure of the data. In other words, the structure of the

aforementioned surface is governed by the connectivities of neurons. Therefore, when

a path passes through a cluster boundary on the SOM, it could actually travel outside

of the data space (Figure 5.1). Calculating the flattest, shortest path would help limit
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the paths to travel along the region represented by the input data sets probability

density function as much as possible, and create a sense of continuity.

Figure 5.1: An example of a data space. The dashed line depicts a path that moves
outside of the data space, which is the region enclosed by the curved shape.

5.3 Proposal

In order to find the flattest, shortest path between two points on the Geodesic SOM,

we propose to use a modification of the approach that was presented in the previous

chapter (described above by Algorithm 2). Figure 5.2 briefly describes the original

approach using a small section of the Geodesic SOM’s two-dimensional data structure.

The nodes represent the neurons and the edges define the connectivity between the

neurons. After training the Geodesic SOM, the distance value of each neuron is

initalized to be -1. The goal neuron, on the other hand, has a distance value of 0.

Both of these are depicted in Figure 5.2a. The distance transformation algorithm is

then applied to create a distance map that could be used for path finding as shown in

Figure 5.2b. The steepest descent is then used to calculate the path from any neuron

to the goal (an example is shown by the bold edges).
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Figure 5.2: This figure describes how the distance transformation algorithm is applied

to the Geodesic SOM. The distance values of the neurons would first be initialized

to -1, while the goal neuron would have a distance value of 0 as shown in (a). The

distance transformation algorithm is then used to propagate each neuron’s U-height

resulting in a distance map (b). Each neuron will be assigned a distance value that

represents the cost of the shortest path to the specified goal. The path from any

neuron to goal may then be computed using the steepest descent. An example of a

path to the goal is highlighted by the bold edges in (b). In this situation, the start

neuron (the bottom rightmost neuron) has a distance value of 5 as this is the sum of

U-heights for each neuron that lies on the path, excluding the goal neuron’s U-height

but including the start neuron’s U-height.

To solve the problem that has been described above, distance transformations are

still applied to the Geodesic SOM. However, neurons with a colour index (denoted by

ci) above a certain threshold (ci max) will be ignored. These colour indices are the

index values of the lookup table used by the Geodesic SOM to assign a neuron with

a colour given its U-height. Hence, any neurons with the same colour index within

a certain area will most likely belong to the same cluster. If U-heights were used

instead, cases may occur where neurons could be incorrectly classified as belonging

to separate cluster or part of a cluster boundary.

As before, the distance value of the goal neuron will be initialized to 0, while the

rest of the neurons will have a distance value of -1. This distance value corresponds
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to the shortest distance to the goal neuron, with a value of -1 meaning that no path

exists from the corresponding neuron to the goal. The goal neuron is then added

to a queue. It is then removed from the queue and its distance value is propagated

to its direct neighbours so that their distance values can be updated. The direct

neighbours are then added to the queue so that their distance values may also be

propagated, and this process is repeated until the queue is empty. However, only the

direct neighbours with a colour index value below or equal to the threshold will be

added to the queue. If no path exists from the start to the goal; that is, the start

neuron’s distance value is -1 after applying the distance transformation algorithm,

then the threshold is increased to be the next highest colour index that was found

during the distance transformation. In this situation the distance transformation will

be repeated, taking the threshold into consideration, until a valid path is found from

the start neuron to the goal neuron.

5.4 Results

For this experiment, the same visualization produced by the Geodesic SOM in the

last chapter will be used in order to see if the correct results may be produced using

the modified approach that was discussed above. The image depicting the incorrect

result of interest in the previous chapter (see Figure 5.3) will be displayed here again

to make comparisons easier.

Figure 5.3: The calculated path (8-13) from node 8 to 13 on the Geodesic SOM. The
path is incorrect and also passes through the mountain range.

By using the flattest, shortest path approach to recalculate the path between
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Algorithm 3 Distance transformation on the Geodesic SOM

Require: start and goal and Geodesic SOM
ci max = max(start.ci, goal.ci)
while start.distance = - 1 do

next ci max = ∞
Queue Q is empty
for all neuron in neurons do

neuron.distance = -1
end for
goal.distance = 0
Q.push(goal)
Start distance transformation
while Q is not empty do

c = pop(Q)
neighbours = getNeighbours(current)
for all n in neighbours do

if n.ci > ci max then
if n.ci < next ci max then

next ci max = n.ci
end if
ignore n

end if
d = n.uh

√
2

if n.distance == -1 then
n.distance = current.distance + n.uh
Q.push(n)

else
if n is a diagonal neighbour and n.distance > c.distance + d then

n.distance = c.distance + d
Q.push(n)

else
if n.distance > c.distance + n.uh then

n.distance = c.distance + n.uh
Q.push(n)
for all v in n’s duplicate neurons do

v.distance = n.distance
end for

end if
end if

end if
end for

end while
ci max = next ci max

end while
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shown in Figure 5.3, the red cluster boundary was avoided and produced a result

that is correct.

Figure 5.4: The path (8-4-2-1-3-6-13) from node 8 to 13 on the Geodesic SOM. The
path is correct and travels around the red mountain range.

5.5 Discussion

As the results show, using the flattest, shortest path approach helps solves the problem

where the path travels through outside the data space. These regions appear as

mountain ranges on the Geodesic SOM’s U-Matrix if viewed as a landscape. The

paths that were computed using this approach were also the correct results on the

binary tree represented by the data set. Therefore, in cases where the shortest path

approach fails, this approach is a valuable alternative that is worth trying out to

generate paths that may follow the structure of a data set more closely.

5.6 Summary

In this chapter, we presented a modified application of the distance transformation

algorithm to the Geodesic SOM. This approach was proposed to solve cases where

a path traverses through cluster boundaries on the SOM, which represent regions

outside the data space. Experimental results suggest that this approach is worth

experimenting with to deal with these situations to produce more accurate results. In

the next chapter, more rigorous experiments will conducted on benchmark manifold
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data sets to further evaluate the use of distance transformations on the Geodesic

SOM.



Chapter 6

Experimental results: Manifold

Learning - Path finding on

Manifolds

In this series of experiments, the aim is to test how the proposed method can find

valid and more truthful paths along or within the data space. Various data sets will

be used that are sampled from different manifolds (such as a torus and Klein bottle)

for this purpose. As discussed in Similä’s work [71], it has been reported that such

manifolds can be observed in areas like computer vision [106]. In these situations, the

state of an object of interest may be constrained to transit between certain values. An

example is also mentioned in the aforementioned work, where a dynamic process may

only traverse between certain states such that the trajectories would form a manifold

in the process variable space. In these environments where the data is obtained, the

transitions between data points are often objects of great interest, besides typical

analyses such as clustering. Furthermore, one task that is performed on manifolds is

calculating the geodesic path between two points. By experimenting with manifolds

using the proposed approach, an approximated geodesic path can be obtained that

can be compared and analyzed to see if the path is meaningful to users.
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6.1 Two-dimensional manifolds embedded in three-

dimensions

The first experiment deals with manifolds that are embedded in 3D. Consequently,

this allows the manifolds and trajectories to be visualized for analysis. The manifolds

used here are the S-curve, swiss roll, torus and figure-8 Klein bottle. These manifolds

and the sampled points used to create the data sets are displayed in Figures 6.1, 6.2,

6.3 and 6.4 respectively. Out of these 4 manifolds, only the S-curve and swiss roll

can be unrolled onto a two-dimensional plane. For each manifold, 2000 points were

randomly sampled on the manifold with a uniform distribution. A twenty-frequency

geodesic dome (4002 neurons) is used for the Geodesic SOM, while the initial update

radius was 39 and 1000 epochs were used for training.

Figure 6.1: The S-curve and the sampled points used for training the Geodesic SOM.

Preliminary experiments with the S-curve and swiss roll manifolds illustrated that

like the conventional SOM, the Geodesic SOM does not handle manifolds that are

essentially a two-dimensional plane very well. The projection of the weight vectors

reveals a significant number of points that lie outside of the manifold. Consequently,

a number of calculated paths would ignore the actual topology of the manifold. To

solve this problem, the Geodesic SOM was modified to use the M-SOM algorithm to
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Figure 6.2: The swiss roll and the sampled points used for training the Geodesic
SOM.

Figure 6.3: The torus and the sampled points used for training the Geodesic SOM.

deal with data that can be described by a manifold. In other words, the M-SOM has

been implemented using a icosahedron-based geodesic dome as the neuron lattice.

For reference, this will be known as the Geodesic M-SOM. The following subsection

will describe the M-SOM algorithm in detail.
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Figure 6.4: The figure-8 Klein bottle and the sampled points used for training the
Geodesic SOM.

6.1.1 M-SOM

The M-SOM is an algorithm that is better suited than the conventional SOM when

dealing with data that is known to form a manifold in the high-dimensional space.

Given a set of points in the high-dimensional observation coordinates, a manifold

learning algorithm is run to calculate their corresponding internal coordinates on the

manifold. Since the goal of Isomap algorithm is to generate a set of points that

preserves the geodesic distances on the manifold surface, it has been used in this

situation (with k = 7) to learn the internal coordinates of each 3D point on the

manifold. A new data set is then created, where each feature vector (y, x) contains

both the 2D internal coordinates y and 3D observations coordinates x. Similarly,

a neuron’s weight vector consists of its position in the internal coordinates w1
j and

the observation coordinates w2
j , where j denotes the neuron’s index on the map.

Calculating the BMU c is done in the internal coordinates according to the Euclidean

distance and is defined by the following equation:

c = argmin
j
||y − w1

j (t)|| (6.1)

The BMU is therefore the neuron that has the shortest distance to the data point
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on the manifold with respect to the internal coordinates. No modifications to the

conventional SOM’s updating rule are necessary.

6.2 Results

Figures 6.5 and 6.6 depicts the scatter plot of each weight vector’s observation coor-

dinates for the S-curve and swiss roll manifold respectively. These results show that

the points closely respect the topology of the manifold.

Figure 6.5: A scatter plot of the weight vectors after training the Geodesic M-SOM
with points sampled from the S-curve.

Examples of paths on the S-curve and swiss roll calculated with the aid of distance

transformations, compared to the results of using linear interpolation can be seen in

Figures 6.7 and 6.8.

Since these manifolds are intrinsically a two-dimensional plane, the use of linear

interpolation could be used on the internal coordinates to find a path on the manifold.

For calculating a path of length n between points (y0, x0) and (yn, xn) using linear

interpolation, the equation to discover the BMU fo each data point ci (i = 1, 2, 3, ...

n) is as follows:
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Figure 6.6: A scatter plot of the weight vectors after training the Geodesic M-SOM
with points sampled from the swiss roll.

Figure 6.7: The calculated path from (-1, 0, 0) to (1, 0, 2) using distance transfor-
mations laid against the weight vectors for the S-curve (a). The distance travelled
is 8.860698. A side view can be seen in (b), while (c) is the side view of the path
with the same temporal length (36 vertices) and calculated with the use of linear
interpolation. The distance travelled for the latter trajectory is 9.034972

ci = argmin
i
||y0 + i× yn − y0

n+ 1
, w1

j (t)|| (6.2)

Similarly, the U-height uhi of each neuron i used by the distance transformation

algorithm is only calculated using the internal coordinates:



68
CHAPTER 6. EXPERIMENTAL RESULTS: MANIFOLD LEARNING - PATH

FINDING ON MANIFOLDS

Figure 6.8: The calculated path from (0, 0, 14.14) between (0, 0, -4.712) using distance
transformations laid against the weight vectors for the swiss roll (a). The distance
travelled is 84.69305. A side view can be seen in (b), while (c) is the side view of
the path with the same temporal length (37 vertices) and calculated with the use of
linear interpolation. The distance travelled for the latter trajectory is 86.115944

uhi =
1

n
Σ
j
d(w1

i , w
1
j ), jεN(i), n = |N(i)| (6.3)

where N(i) is set the neurons in the neighbourhood of neuron i.

Table 6.1 presents a comparison of the approximated geodesic distances on the

S-curve and swiss roll by the distance transformation algorithm and through linear

interpolation. These distances were compared to the distances computed by Dijkstra’s

algorithm applied to the k-nearest neighbour (k = 7) graph of all 2000 sampled points;

that is, the distance matrix fed to the Isomap algorithm. Note that the total number

of temporal vertices for a trajectory computed by linear interpolation is set to be

the same number of temporal vertices for the trajectory calculated with the distance

transformation algorithm.

From these results, it can be gathered that the use of linear interpolation on the

Geodesic M-SOM produces paths that are generally close to the real geodesic path.

On the other hand, the use of distance transformations on the Geodesic M-SOM

produces paths that are signficantly longer than the geodesic path. This occurs due

to the Geodesic M-SOM’s spherical structure, which is not suitable for manifolds

that are intrinsically a two-dimensional plane. However, a two-dimensional M-SOM

may handle such manifolds better as this would effectively attempt to unroll the
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SOM Type Manifold Distance transformation Linear interpolation
Geodesic M-SOM S-curve 43.52% 5.44%
Geodesic M-SOM Swiss roll 48.08% 6.29%
2D M-SOM S-curve 5.93% 5.19%
2D M-SOM Swiss roll 12.79% 5.35%

Table 6.1: The mean difference in geodesic distances computed by linear interpolation
and the distance transformation algorithm, compared to Dijkstra’s algorithm applied
to a manifold’s k-NN graph. Linear interpolation and distance transformations was
applied to the Geodesic M-SOM and two-dimensional M-SOM for the S-curve and
swiss roll data sets.

curved manifolds so they are flat. The results of using a two-dimensional M-SOM for

approximating geodesics is also compared in Table 6.1. The size of the SOM is 64

x 64 (4096 neurons), with an initial update radius of 27 and an initial learning rate

of 0.8. The comparison shows that the performance of the distance transformation

algorithm and linear interpolation is very similar.

However, there is a significant problem with using linear interpolation: calculating

the optimal temporal length of a trajectory. If the length is too small, the trajectory

is more likely not to follow the structure of the data. While it would seem that

increasing the temporal length would help make the path stay on the surface more, if

the length is too long, the trajectory may actually not be as smooth and the distance

travelled would be significantly larger. Figure 6.9 is an example where additional

vertices were automatically added until no new neurons are able to be inserted. The

resulting path is significantly longer and not as smooth. However, using distance

transformations allows trajectories to be formed that like the work by Skupin and

Hagelman [61], could be used to observe aspects of change such as parallelism (see

Figures 6.10 and 6.11). Furthermore, the distance transformation algorithm produces

trajectories that respect the topology of the data well, and has a similar performance

to linear interpolation with respect to approximating the geodesic path.

For the torus and figure-8 Klein bottle, the Isomap algorithm was not used as

the points would be embedded in two dimensions, whereby the manifolds would be

cut open. Since the manifolds do not have boundaries, this would result in a loss of

connectivity information. Thus, the regular Geodesic SOM algorithm was used. As

the neuron lattice does not contain boundaries either, this may allow the Geodesic
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Figure 6.9: The calculated path from (-1, 0, 0) between (1, 0, 2) using linear inter-
polation on the S-curve. In this case, the maximum amount of temporal vertices is
used (by temporal vertices until no new neurons are involved) and the trajectory is
not as smooth as indicated by the “zig zags”. Consequently, the distance travelled
with this path much larger (14.15989)

Figure 6.10: This figure shows the path from (-1, 5, 0) to (1, 5, 2) and the path from
(-1, 0, 0) to (1, 0, 2) on the M-SOM. These paths are represented by the top and
bottom trajectories respectively and are computed using distance transformations.
Both paths are horizontal, which could indicate parallel movement.

SOM to handle other topologies that share the same trait. The results of projecting

the weight vectors of each neuron are shown in Figures 6.12 and 6.13. Once again, it

can be observed that the points lie close to the surface of the corresponding manifold
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Figure 6.11: The figure depicts two paths on the projected weight vectors for the S-
curve. The left and right paths correspond to the paths in part (a) and (b) of Figure
6.10 respectively. Both paths can be seen to be close to parallel on the S-curve.

and the resulting paths follow the topology of the data well. Figures 6.14 and 6.15

provide an example of a paths on the torus and Klein bottle respectively.

Figure 6.12: A scatter plot of the weight vectors after training the Geodesic M-SOM
with points sampled from the torus manifold.

However, while testing with the torus manifold, it was observed that there were

weight vectors that represented points located within the hole; that is, the points do

not lie on the surface of the torus (Figure 6.16). These points generally lie in the
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Figure 6.13: A scatter plot of the weight vectors after training the Geodesic M-SOM
with points sampled from the Klein bottle manifold.

Figure 6.14: The calculated path from (-1.5, 0, 0) to (1.5, 0, 0) using distance trans-
formations laid against the weight vectors for the torus manifold (a). The result of
using linear interpolation produces a path that does not travel along the surface of
the torus (b).

cluster boundaries that have been enclosed within the rectangles in Figure 6.17. In

this situation, floodplain analysis could be used to avoid generating incorrect results.

Figures 6.18a and 6.18b illustrate a comparison of using distance transformations
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Figure 6.15: The calculated path from (0.6812, 1.18, 0.7866) to (1.707, 0, 0.5) using
distance transformations laid against the weight vectors for the Klein bottle manifold
(a). The result of using linear interpolation produces a path that does not travel
along the surface of the Klein bottle (b).

Figure 6.16: A top-down view of the torus that reveals a number of points outside of
the data space.

without and with floodplain analysis on the Geodesic SOM respectively. With the

use of floodplain analysis, the path in 6.18b navigates around the cluster boundary

unlike the results in 6.18a. The corresponding paths for each result on the torus

is depicted in 6.19. Visually comparing the two images shows that using floodplain

analysis (Figure 6.19b) produces a path that travels along the torus, which would not
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Figure 6.17: The Geodesic SOM after training it with 2000 points sampled from the
torus. The cluster boundaries are within the drawn rectangles.

otherwise occur (Figure 6.19a).

Figure 6.18: A close view of the right cluster boundary on the Geodesic SOM in Figure
6.17. Part (a) is the result of using only distance transformations whereby the path
between (-0.22843947, -0.44011176, 0) and (-0.33318394 0.37217036 0.015714455) tra-
verses through the cluster boundary. The result of using distance transformations
with floodplain analysis produces a path that avoids the cluster boundary (b).

6.2.1 Recovering manifolds from a cloud of points

It can be observed the paths computed by the proposed method truthfully follow

the structure of the data. Although the method was not intended to be use for this

purpose, it may also be possible to use the resulting paths to recover the manifold

from a cloud of points. Figures 6.20 to 6.23 depict the results of approximating
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Figure 6.19: Parts (a) and (b) of this figure depict the paths on the Geodesic SOM
in part (a) and (b) of Figure 6.18 on the actual torus respectively.

the geodesic path from just one point to every other data point on each manifold.

From finding the path from each data point to a single point, a large part of the

manifold’s structure can already be seen that provides visual clues to how the points

are connected. This information can be used to reconstruct the manifold.

Figure 6.20: The path from (-0.463182, 2.081766, -0.886263) to every other data point
on the S-curve.

6.3 Two-dimensional manifold of face images

This section will illustrate how well the use of distance transformations on the M-SOM

performs on a two-dimensional manifold of face images. The 698 images are taken
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Figure 6.21: The path from (5.600684, 22.194967, 12.521035) to every other data
point on the swiss roll.

Figure 6.22: The path from (0.408809, -0.50274, 0.355076) to every other data point
on the torus.

from the problem presented in [69]. Each 32 x 32 image is of a face in various poses

that differ in two paramaters: azimuth and elevation. Each image is then submitted

to the Isomap with k = 7 to compute the internal coordinates for the Geodesic M-

SOM. A 10 x 10 hexagonal grid is used for the M-SOM and it is trained for 1000

epochs, with an initial update radius of 4 and an initial learning rate of 0.8. Using

fewer neurons than the amount of data samples allows us to save on computation.

The M-SOM’s structure shown in Figure 6.24 reveals that the face images have been

arranged in a fairly smooth manner.

As per the previous experiments, the use of linear interpolation will be compared

to distance transformations. Both approaches are used to discover the transition from
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Figure 6.23: The path from (1.177278, -0.038267, -0.180746) to every other data point
on the torus.

one face image to another; that is, image interpolation. An example of a result is

shown in Figure 6.25. The start and goal are the left and right images respectively.

To keep the comparison fair, the temporal lengths of each trajectory are once again

the same. Figure 6.25a illustrates the use of linear interpolation, while 6.25b is the

result of using distance transformations. Both methods can be observed to generate

fairly similar results. Although linear interpolation may produce more accurate re-

sults, the previous experiments with manifolds revealed that automating the linear

interpolation method can produce signficantly longer trajectories with respect to the

distance travelled in the feature space.

6.4 Discussion

Through our experiments, we were able to show that there are limitations in the use of

linear interpolation for trajectory formation on SOMs. The process can be automated

by adding temporal vertices until no new neurons would be involved. However, this

can result in trajectories that are not accurate representations of the path travelled

in the feature space as the experiments have shown. The use of this approach would

therefore require a suitable temporal length to be chosen. Short trajectories (that is,

trajectories with a small temporal length) may not respect the topology of the data
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Figure 6.24: The two-dimensional data structure of the M-SOM that shows what each
output image is at each neuron and how they are arranged after training the M-SOM
with the data set of various face images. The blue and red trajectories correspond to
the results of using linear interpolation and the distance transformation algorithm as
depicted in part (a) and (b) of Figure 6.25 respectively.

and thus are not realistic representations of the path travelled in the original high-

dimensional space. Long trajectories, on the other hand, may produce paths that are

not as smooth and travel significantly larger distances in the high-dimensional space.

Hence, the insertion of additional temporal vertices to trajectories on the SOM would

need to be done manually.

The use of distance transformations on the Geodesic SOM has been shown to be

a useful alternative that gives us the best of both worlds. The results approximate

the geodesic distances in the feature space well and clearly respect the topology of
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Figure 6.25: Parts (a) and (b) of this figure are examples of using linear interpolation
and distance transformations on the M-SOM for image interpolation respectively.
Both results are fairly similar.

the data. Furthermore, preliminary experiments have shown that because the paths

respect the topology of the data, for a given manifold, the approximated geodesics

between all pairs of points could possibly be used to reconstruct the manifold from

an unorganized set of points. Therefore, when linear interpolation does not provide

useful information, the use of distance transformations as an alternative method of

(nonlinear) interpolation should be considered. This would allow the extraction of

more information about intermediate states that may not otherwise be obtained.
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Experimental results:

Socio-demographic data

7.1 Introduction

Trajectories have previously been used on the SOM to visualize temporal, demo-

graphic changes in population census data [61]. This involves connecting temporal

vertices with a straight line. Linear interpolation was used to insert additional tempo-

ral vertices to trajectories so that more informed judgements about the relationships

between trajectories could be made. This provides analysts the ability to compare

different trajectories to observe if different objects are undergoing parallel, conver-

gent or divergent development. However, one of the significant disadvantages of this

approach is that analysts are unable to perceive the distances in the feature space

through these trajectories.

In this chapter, a comparative analysis on the use of distance transformations and

linear interpolation on socio-demographic data will be conducted. This will enable us

to study whether or not distance transformations could further assist the process of

temporal analysis and produce cognitively plausible trajectories whose lengths would

correspond to distances in the high-dimensional space.
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7.2 Experimental data

In this experiment, an evaluation on whether or not the trajectories using the pro-

posed approach could also be used for examining the intermediate states and assisting

the process of temporal analysis will be conducted. Data was obtained from the En-

ergy Information Administration web site for the purpose of this experiment. The

data describes the CO2 emission levels (and related attributes) of a large number

of countries between 1980 and 2004. This data was extracted to produce a data set

that contains data on 21 selected countries (with CO2 emission levels over 100 million

metric tons) and their emission levels between 1990 and 2004. Altogether, there are

313 data samples described by 9 attributes. The attributes and their corresponding

units are:

1. Population (millions)

2. Total CO2 emissions (million metric tons of carbon dioxide)

3. Per capita emissions (metric tons of carbon dioxide)

4. Emissions from petroleum (million metric tons of carbon dioxide)

5. Emissions from natural gas (million metric tons of carbon dioxide)

6. Emissions from coal (million metric tons of carbon dioxide)

7. Total primary energy production (quadrillion BTU)

8. Total primary energy consumption (quadrillion BTU)

It should be noted that complete data is not available for Russia during 1990 and

1991, and that European Union is counted as a single entity since the Kyoto Protocol

counts them as such.

In this experiment a twenty-frequency geodesic dome is used, with a learning rate

of 0.8, an initial update radius of 39 and 1000 epochs is used for training the Geodesic

SOM.
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7.2.1 Attribute space visualization

Figure 7.1 depicts the resulting visualization when the Geodesic SOM is trained with

the data set. The Wagner III cartographic projection technique is used so an entire

view of the visualization can be seen. In the centre of the figure, it can be observed

that there are a group of clusters. These are countries with extremely high emission

levels that are in the thousands of million metric tons. The other countries have

emission levels in the hundreds of million metric tons. The eight component planes

are shown in figures 7.2-7.9 and can be used determine which attributes may be

related to each other.

Figure 7.1: This figure depicts the Geodesic SOM after it has been trained with the

carbon emissions data set. Large dark blue regions indicates that the Geodesic SOM

has created a smooth distribution of the data. A group of clusters can also be seen

where countries with high emission levels have been mapped to. Three-letter country

codes following the ISO 3166-1 alpha-3 standard have been used to indicate where the

data for each country is generally located. The exception here is that the European

Union has been abbreviated as EU.
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Figure 7.2: The first component plane of the Geodesic SOM that corresponds to

population values.

Figure 7.3: The second component plane of the Geodesic SOM that corresponds to

total CO2 emission values.

Figure 7.4: The third component plane of the Geodesic SOM that corresponds to per

capita emission values.
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Figure 7.5: The fourth component plane of the Geodesic SOM that corresponds to

petroleum emission values.

Figure 7.6: The fifth component plane of the Geodesic SOM that corresponds to

natural gas emission values.

Figure 7.7: The sixth component plane of the Geodesic SOM that corresponds to coal

emission values.
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Figure 7.8: The seventh component plane of the Geodesic SOM that corresponds to

total primary energy production values.

Figure 7.9: The eighth component plane of the Geodesic SOM that corresponds to

total primary energy consumption values.

From the data, it is observed that the US has the highest emission levels out of all

of the countries. Consequently, its data samples have been mapped to a single cluster

with prominent cluster boundaries, which indicates that the data there is significantly

different to the rest of the other data; that is, it has significantly higher emission levels

than the other countries. Since the Geodesic SOM produces a topological mapping

of the data space, countries with very high emission levels (such as China, Japan and

the EU) have been placed in separate clusters located near the US’ cluster. A close

view of how the data of these countries (including the US’ data) have been ordered

within their clusters can be seen in Figures 7.10-7.13.
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Figure 7.10: This figure displays a close-up view of the US’ location on the Geodesic

SOM. It’s data has been placed in a cluster due to its high emission levels ( 4000-5000

million metric tons).

Figure 7.11: This figure displays a close-up view of the China’s location on the

Geodesic SOM. It’s data has been placed in a cluster due to its high emission levels

( 2000-4000 million metric tons).
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Figure 7.12: This figure displays a close-up view of Japan’s location on the Geodesic

SOM. It’s data has been placed in a cluster due to its high emission levels ( 1000-1300

million metric tons).

Figure 7.13: This figure displays a close-up view of the EU’s location on the Geodesic

SOM. It’s data has been placed in a cluster due to its high emission levels ( 3200-3600

million metric tons).

Overall, the SOM distributes the data in a fairly smooth manner such that the

emission levels generally decrease when moving away from the location of the US’

cluster. The smooth distribution is indicated by the generally low distances between

the neurons and their direct neighbours on the Geodesic SOM. This is also indicated

by the large blue regions on the Geodesic SOM.
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7.2.2 Temporal observation

Visual analytics allows us to perceive patterns and extract knowledge from visual-

izations. In the results in Figures 7.10 to 7.14, a close view is provided that depicts

how the states of selected countries have been ordered on the SOM. These figures

show that the states of each countries in these clusters have also been arranged in a

direction relative to the US’ cluster. In other words, the closer a country is to the

US’ cluster on the Geodesic SOM, the higher the emission level will be.

Figure 7.14: This figure displays a close-up view of the Australia’s location on the

Geodesic SOM. It’s data has been placed in the large dark blue regions due to its

relatively low emission levels ( < 300 million metric tons).

Hence, trends can be identified that allows users to make predictions on events that

may occur in the future. For instance, it is evident that Australia’s emission levels are

increasing as indicated by the direction its data is heading toward on the Geodesic

SOM; that is, toward the group of clusters containing countries with high emission

levels (see Figure 7.14). This information can be used to predict that Australia’s

emission levels in 2005 will be higher than they were in 2004. Similar predictions

can be made for China, Japan and the EU since the direction of the data inside

the corresponding clusters (Figures 7.11-7.13 respectively) is heading toward the US’

cluster.
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7.2.3 Trajectory finding

Having trained the Geodesic SOM with the data set, distance transformations were

then used to calculate the trajectories between the BMUs that correspond to a coun-

try’s emission levels over consecutive years (ie. 1990 to 1991, 1991 to 1992...). As an

example, the application to Australia’s data has been used to illustrate the results.

The emission levels and other attributes can be seen in Table 7.1, where ai denotes

the ith attribute as described above. Floodplain analysis is once again used here.

Year a1 a2 a3 a4 a5 a6 a7 a8

1990 17.022133 262.7667114 15.43676761 95.38250096 34.85799059 132.5262199 6.144310579 3.718075263

1991 17.257526 263.4723104 15.26709624 93.36012586 32.68014688 137.4320376 6.289699754 3.708916016

1992 17.481977 276.237352 15.80126504 98.01707624 33.73826649 144.4820093 6.565582797 3.817020878

1993 17.688687 281.0651078 15.88954046 101.2273867 35.09186584 144.7458552 6.609968594 3.91614524

1994 17.892557 279.0009996 15.59313181 104.1042977 36.58140673 138.3152953 6.909955523 3.91767409

1995 18.116171 284.8350815 15.72269777 105.002785 39.26470392 140.5675926 7.423951345 4.050353779

1996 18.348078 297.5430653 16.21657949 105.4695138 39.62123855 152.4523129 7.571375586 4.223340052

1997 18.565243 326.86827 17.60646332 107.0070946 39.86425812 179.9969173 8.310526864 4.560134692

1998 18.768789 333.2648046 17.75632965 111.154269 41.70808728 180.4024483 8.661854641 4.595390588

1999 18.968247 350.8170474 18.49496411 114.1509535 43.45502811 193.2110658 8.867776766 4.819522543

2000 19.16462 353.2025758 18.42992847 113.9574418 45.42068307 193.8244509 9.684649255 4.83251974

2001 19.357594 366.5098513 18.93364699 115.1666893 47.72197798 203.621184 10.26527802 4.993398957

2002 19.546792 374.3533436 19.15165126 116.6764917 50.3877261 207.2891258 10.51061268 5.097017823

2003 19.731984 371.702066 18.83754142 116.4360603 52.02929647 203.2367092 10.35485931 5.092657062

2004 19.913144 386.1775027 19.39309547 117.073242 52.35787241 216.7463883 10.55533594 5.266284743

Table 7.1: The data values for Australia’s emission from 1990 to 2004.

Tables 7.2 and 7.3 contains the values of the weight vectors of the other neurons

that lie on the trajectory between Australia’s state in 1990 and 1991, and 1995 and

1996 respectively. These have been calculated through the use of distance transfor-

mations. The first row of Table 7.2 are the values of the weight vector associated with

the BMU representing Australia’s emission levels in 1990, while the last row corre-

sponds to the BMU for its emission levels in 1991. Similarly, the first row of Table

7.3 corresponds to Australia’s emission levels in 1995 and the last row corresponds to

its levels in 1996. We will denote these BMUs in general as xstart and xgoal for easier

reference, where xstart represents the neuron at the beginning of the trajectory and

xgoal is the neuron at the end of the trajectory.
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a1 a2 a3 a4 a5 a6 a7 a8

17.088438 262.7178 15.382145 95.082695 34.383934 133.25119 6.1376987 3.7160716

17.123491 263.00522 15.363072 94.567406 33.97294 134.46494 6.1965356 3.7139697

17.179424 263.2653 15.328686 94.10814 33.483253 135.67378 6.2360034 3.7125971

17.417149 263.77472 15.23209 93.38921 32.927113 137.45827 6.248512 3.7106044

Table 7.2: The calculated attribute values for Australia between 1990 and 1991 using

the distance transformation algorithm. The first row contains the weight vector values

for the BMU corresponding to Australia’s data for the year 1990. The last row

contains the weight vector values for the BMU corresponding Australia’s data for the

year 1991.

a1 a2 a3 a4 a5 a6 a7 a8

18.098314 284.5111 15.721142 104.93624 38.70803 140.86678 7.3129263 4.0355725

18.071562 284.27377 15.729849 104.729576 38.616154 140.9281 7.304681 4.0294037

18.148548 288.69827 15.905892 104.78141 38.880722 145.03613 7.377158 4.0928154

18.238848 293.63644 16.10159 104.833015 38.97587 149.82751 7.424095 4.1591787

18.662144 295.98477 16.017136 104.219315 38.997448 152.76799 7.4241176 4.186639

Table 7.3: The calculated attribute values for Australia between 1995 and 1996 using

the distance transformation algorithm. The first row contains the weight vector values

for the BMU corresponding to Australia’s data for the year 1995. The last row

contains the weight vector values for the BMU corresponding Australia’s data for the

year 1996

These results show that the Geodesic SOM has been able to interpolate the values

between data samples fairly well as the weight vector values of intermediate neurons

generally lie between the the weight vector values of xstart and xgoal. Hence, the weight

vectors of these neurons are meaningful in the sense that they are indicative of the

progression between the two states and the intermediate states reached. In other

words, if the values of xgoal are higher than the values of xstart as it is in these two

cases, as we travel along the trajectory from xstart to xgoal, the weight vector values

of the intermediate neurons will increase as well. This behaviour can be observed

by inspecting the results in the aforementioned two tables. If we look at each row,

starting at the first row and go down to the last row, the values generally increase
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as we go down the table. Furthermore, the Geodesic SOM is able to preserve the

relationship between the attributes of the data where the total CO2 emissions is

generally the sum of the emissions from the consumption of petroleum, natural gas

and coal (ie. a2 = a4 + a5 + a6).

This application of the distance transformation algorithm was then used to com-

pute each country’s trajectory to compare the results calculated through linear inter-

polation. Given a country and the feature vectors representing its state for each year,

the feature vectors for two consecutive years would be interpolated to produce vectors

that represent the country’s state between this period. The BMUs of the feature vec-

tors and the vectors obtained through linear interpolation would then be connected

to form a trajectory. Assuming that linear development occurs between two consecu-

tive years, the distance between two vectors in the high-dimensional space would be

the Euclidean distance. Therefore, the distances of the trajectories computed by the

distance transformation algorithm and linear interpolation in the feature space can

be compared to the Euclidean distance. The results for each country’s trajectories

are depicted in Table 7.4. µ(|di − dDTi
|) represents the mean difference between the

Euclidean distance and the distance computed through distance transformations for

all trajectories of a single country. Similarly, µ(|di − dLIi |) is the mean difference be-

tween the Euclidean distance and the distance computed through linear interpolation.

µDT (σ(||wi−wi+1||)) and µLI(σ(||wi−wi+1||)) are the mean standard deviations of the

interneuron distances for all trajectories of a country using distance transformations

and linear interpolation respectively. Note that the temporal lengths of the trajec-

tories created with the use of linear interpolation are the same as those generated

through distance transformations.
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Country µ(|di − dDTi
|) (%) µ(|di − dLIi

|) (%) µDT (σ(||wi − wi+1||)) (%) µLI(σ(||wi − wi+1||)) (%)

Argentina 29.40953 48.60662 72.1041 112.88268

Australia 9.078655 39.05893 71.67744 78.51406

Brazil 12.027331 10.543716 55.294853 56.924355

Canada 19.078484 84.95633 62.74848 131.57527

China 10.563775 18.250254 55.636246 53.567314

EU 49.153008 133.52766 69.662476 76.69917

India 17.04567 22.79891 57.474888 59.230793

Indonesia 37.762123 37.730553 68.15985 74.470665

Iran 14.1727 17.737558 47.78263 36.874268

Japan 35.371346 102.624344 72.35351 92.329254

South Korea 5.895685 226.55728 59.516376 73.67294

Mexico 25.719133 44.484814 66.98804 87.71016

Poland 19.600266 171.12245 68.541046 116.26843

North Korea 28.74262 284.84613 70.20034 86.63369

Romania 21.514257 160.75012 50.586857 89.37002

Russia 11.707836 123.47771 69.0686 82.590385

Saudi Arabia 12.528671 430.21994 72.054665 120.03248

Taiwan 11.068022 564.46606 61.13882 73.57899

USA 45.88477 63.094265 64.67646 75.47451

Venezuela 46.060486 138.79735 71.36755 114.84687

South Africa 18.404032 135.91045 72.08485 72.670685

Table 7.4: A comparison of the distances in the feature space computed using lin-

ear interpolation and the distance transformation algorithm. The distances for each

region were computed using all the trajectories between BMUs corresponding to emis-

sion levels in consecutive years (1990 to 1991, 1991 to 1992, etc...).

This comparative analysis demonstrates that the trajectories computed with dis-

tance transformations generally represent the distances in the feature space more

closely than when linear interpolation is applied. A thorough analysis of the results

using linear interpolation reveals that the significant differences occur when a trajec-

tory does not accurately represent the intermediate states in the feature space. In

other words, the weight vector values of the BMUs are not nicely interpolated and

are significantly different to the linearly interpolated values. Table 7.5 demonstrates

an example where linear interpolation has been used to create a trajectory for Aus-

tralia’s state between 1996 and 1997. Looking at attribute a1, the range of values

should be between 18.662144 and 18.608067: the first and last values for attribute ai,

respectively. However, there are actually values that fall outside of this range, which



7.3. DISCUSSION 93

would affect the distances in the feature space. Another aspect that could be affected

would be the distances between each consecutive temporal vertex. This is indicated

by the values of µLI(σ(||wi − wi+1||)). Although it may be possible to obtain more

accurate results using linear interpolation with respect to these two points, this would

be a time consuming process as it requires experimenting with a different amount of

temporal vertices to achieve a satisfactory result.

a1 a2 a3 a4 a5 a6 a7 a8

18.662144 295.98477 16.017136 104.219315 38.997448 152.76799 7.4241176 4.186639

20.042826 302.06064 15.2126255 117.88931 32.12656 152.04477 4.846756 4.2916255

21.685394 310.2898 15.354114 98.01925 36.792103 175.4784 7.130263 4.2829957

18.565798 318.55502 17.165249 107.16122 39.61561 171.77824 8.014653 4.4631753

18.608067 326.29 17.540138 107.75241 40.224808 178.31284 8.332399 4.5450416

Table 7.5: The calculated attribute values for Australia between 1996 and 1997 using

the distance transformation algorithm. The first row contains the weight vector values

for the BMU corresponding to Australia’s data for the year 1996. The last row

contains the weight vector values for the BMU corresponding Australia’s data for the

year 1997.

7.3 Discussion

The results obtained on socio-demographic data has shown that besides linear inter-

polation, distance transformations can also create trajectories that are also cognitively

plausible. The neurons on these trajectories are able to provide analysts an indication

on the intermediate states that an object undergoes. Another important advantage

compared to the results of using linear interpolation is that the distances of the trajec-

tories in the feature space are closer to the real distance travelled in the feature space.

These results suggest that the use of path finding techniques may thus create tra-

jectories that are more accurate visualizations. However, one of the disadvantages is

that both the SOM and Geodesic SOM create topological mappings of the data space

that are not distance preserving, and the interneuron distances is therefore irregular.

One possible solution to this would be use a variant of the SOM that preserves the
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distance relationships, such as the ViSOM [107].

7.4 Summary

In this chapter, a comparative analysis was done on two methods for visualizing

trajectories on a Geodesic SOM trained with socio-demographic data, namely dis-

tance transformations and linear interpolation. Results showed that it may possible

to obtain more accurate trajectories using path finding techniques like the distance

transformation algorithm. In the next and final chapter, conclusions will be drawn

from the research presented in this thesis. This will be followed by suggestions on the

future direction of this research, which may improve the results.



Chapter 8

Conclusions and Future Work

8.1 Conclusion

Everyday people are familiar with geographic maps. They are primarily used for:

• Creating simplified depictions of geographic spaces

• Tracking the movement of a certain object located in a geographic space

• Planning on how to get from one location to another

In this thesis, we explored the use of spatialization methods, particularly Self-

Organizing Maps, to create maps of high-dimensional spaces. We envisioned that

such maps could be used to perform these three tasks in the high-dimensional space.

Spatialization methods already create simplifed representations of a n-dimensional

space as dimensionality reduction is used to generate two-dimensional visualizations.

These visualizations, which share similarities with maps, allow users to identify pat-

terns (clusters, for example) in the data by organizing the data such that character-

istics like distances or topology are preserved.

Literature has shown that the topology preserving SOM can be used to track tem-

poral and state changes. Applications for this include process monitoring, financial

analysis and geographic analysis. The fact that the SOM can be used for both di-

mensionality reduction and tracking temporal/state changes has provided motivation
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for the work presented in this thesis. Here, the application of path planning to the

SOM was explored to investigate whether or not abstract, high-dimensional spaces

could be navigated through using this approach.

One of the problematic issues associated with the traditional SOM though, is

the border effect, which decreases the accuracy of the mapping. The problem arises

due to the two-dimensional, grid structure of the SOM. Hence, the Geodesic SOM

was chosen so that the SOM algorithm could be implemented on a geodesic dome to

remove the border effect. The distance transformation algorithm was then selected as

the method to perform path finding on the SOM. The application of this algorithm

would help discover the shortest path on the SOM, where the distance measure is the

local distances in the high-dimensional space as calculated by the U-Matrix.

Experiments were conducted to evaluate the results of using this approach. Results

showed that this approach compares well against linear interpolation. Furthermore,

it can be seen that there are problems associated with the use of linear interpolation.

It is difficult and time consuming to determine the amount of vertices that should

be used to generate a path such that its distance reflects the distance in the feature

space as close as possible while also following the structure of the data closely. We

presented in this thesis an alternative method to compute and plot the intermediate

states through an automated process that performs comparably well with respect to

both of these aspects.

Overall, our work provides new opportunities to the process of visual analytics.

The proposed method allows users not only to visually inspect the high-dimensional

data, but also to obtain extra visual cues. This might trigger the user to ask different

analytical questions that would not have been asked otherwise.

8.2 Future work

In this thesis, distance transformations were used to plan paths from one point to

another on the SOM. There are a few aspects that could be improved or deserve fur-

ther research. Both the conventional SOM and Geodesic SOM are known to produce

topology preserving mappings that do not preserve the distance relationships. The
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interneuron distances are therefore inconsistent. When dealing with temporal data,

this makes it difficult to associate a time period to a neuron that lies on the path

computed by the method we have presented. Further work would look into modifying

the Geodesic SOM so that it is also distance preserving. Preliminary work has been

done where the ViSOM updating rule [107] has been adapted for use on the Geodesic

SOM. The ViSOM updating rule decomposes the updating force [x(t) − wk(t)] into

two components. One represents the updating force from the winner (BMU) v to the

input x(t) ([x(t) − wv(t)]. The other is a contraction force that brings any k in the

neighbourhood closer to the winner ([wv(t)− wk(t)]). A constraint is applied to this

contraction force so that distances between neurons on the map are proportional to

the distances in the feature space. This results in the following updating rule:

wk(t+ 1) = wk(t) + hci(t)([x(t)− wv(t)] + [wv(t)− wk(t)]× β) (8.1)

where

β =
dvk

∆vkλ
− 1 (8.2)

where dvk and ∆vkλ are the distances between the neurons v and k in the feature

space and on the map respectively. λ is a resolution parameter that controls the

distance between adjacent neurons in the feature space.

While experimenting with the “Geodesic ViSOM” and ViSOM, problems were

encountered where the weight vectors could reach erroneous values when the value

of β was greater than 2. Attempts were made to contact the author of the ViSOM

to first request source code for validation and experimentation. The author replied

and mentioned that they do not have a satisfactory, general implementation of the

ViSOM but only had code specific to certain data sets. While the author has offered

to provide further assistance, we have yet to hear back from them for a long period

of time after reporting our findings regarding the erroneous values.

Another aspect that could be improved is in creating paths that avoid areas on

the SOM (namely, cluster boundaries) that represent regions outside of the data

space when appropriate. The method presented in this thesis to solve this problem
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effectively is to perform segmentation on the SOM to restrict the region where path

finding is applied. One problem that may occur with this approach is that it may

incorrectly classify a neuron to be part of another cluster or cluster boundary when

it actually belongs to the same cluster as the start and goal neuron. The application

of the watershed transformation to the U-Matrix could help in this regard. This

would help separate the visualization such that watersheds would be represented by

cluster boundaries and catchment basins by the rest of the visualization. This would

help better distinguish which regions would be more desirable to travel through,

which in this case would be the catchment basins. Using the distance transforma-

tion algorithm for path planning makes implementing the watershed transformation

more simple, since both of these could then be implemented using an image foresting

transformation-based approach.

Another area worth looking into involves dealing with manifolds. During our

experiments, it was seen that it was possible to determine what the structure of the

manifold appears like from the set of data points. This can be achieved as our method

uses a topology preserving mapping and the local distances in the high-dimensional

space calculated by the U-Matrix. This poses an interesting problem for research:

given a Geodesic SOM corresponding to an n-dimensional data space, can all the paths

between each pair of point be used to find a manifold that fits this data? Solving this

problem would enable researchers to understand more about the data’s structure and

provide an alternative visualization of the data space. Since cartographic projection

techniques can be applied to the Geodesic SOM, it would be worth investigating their

use in creating two-dimensional embeddings of manifolds. Thus, when the data set

contains points sampled from a manifold, users could interactively create different

two-dimensional embeddings by manipulating the two-dimensional projection of the

Geodesic SOM.

Tryba and Goser have also suggested that path finding techniques could be used for

process steering [52]. This particular area of research remains to be explored despite

the fact that such techniques could information about the transition path between

two states. The results presented in this thesis show promise for such applications.

The use of the method proposed in this thesis for benchmarking applications, for
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example, is one area that is certainly worth exploring. This could help analysts to

track and compare the progress of an object or process. Moreover, the results could

help analysts to discover characteristics that would lead toward some desirable state

and support the decision making process.
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