7 research outputs found

    SYNTHESIS AND ANTITUBERCULAR ACTIVITY OF PYRIDAZINONE DERIVATIVES

    No full text

    Strychnos nux-vomica seeds: Pharmacognostical standardization, extraction, and antidiabetic activity

    No full text
    Background: Strychnos nux-vomica, commonly known as kuchla, contains strychnine and brucine as main constituents. Minor alkaloids present in the seeds are protostrychnine, vomicine, n-oxystrychnine, pseudostrychnine, isostrychnine, chlorogenic acid, and a glycoside. Seeds are used traditionally to treat diabetes, asthma, aphrodisiac and to improve appetite. Objective: The present study was aimed to evaluate the various pharmacognostical characters and antidiabetic activity of S. nux-vomica seed. Materials and Methods: Pharmacognostical characters were performed as per the WHO guideline. Extraction was carried out in petroleum ether, chloroform, alcohol, hydroalcoholic, aqueous, and phytochemical constituents present in extracts were detected by different chemical tests. Among these extracts hydroalcoholic, aqueous extracts were evaluated for antidiabetic activity on the basis of extractive yield and phytoconstituents, in alloxan-induced diabetic rats using gliclazide as standard. Results: Various analytical values of S. nux-vomica extract were established. Phytoconstituents present in S. nux-vomica extracts were detected. Conclusion: S. nux-vomica extracts show antihyperglycemic activity in experimental animals

    Antiinflammatory activity of Piper longum

    No full text
    In the present study, antiinflammatory activity of the Piper longum dried fruit's oil was studied in rats using the carrageenan-induced right hind paw edema method. The activity was compared with that of standard drug ibuprofen. The dried fruit's oil inhibited carrageenan-induced rat paw edema. The results indicated that the dried fruit's oil produced significant (p< 0.001) antiinflammatory activity when compared with the standard and untreated control

    A Clinical Insight on New Discovered Molecules and Repurposed Drugs for the Treatment of COVID-19

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began churning out incredulous terror in December 2019. Within several months from its first detection in Wuhan, SARS-CoV-2 spread to the rest of the world through droplet infection, making it a pandemic situation and a healthcare emergency across the globe. The available treatment of COVID-19 was only symptomatic as the disease was new and no approved drug or vaccine was available. Another challenge with COVID-19 was the continuous mutation of the SARS-CoV-2 virus. Some repurposed drugs, such as hydroxychloroquine, chloroquine, and remdesivir, received emergency use authorization in various countries, but their clinical use is compromised with either severe and fatal adverse effects or nonavailability of sufficient clinical data. Molnupiravir was the first molecule approved for the treatment of COVID-19, followed by Paxlovid™, monoclonal antibodies (MAbs), and others. New molecules have variable therapeutic efficacy against different variants or strains of SARS-CoV-2, which require further investigations. The aim of this review is to provide in-depth information on new molecules and repurposed drugs with emphasis on their general description, mechanism of action (MOA), correlates of protection, dose and dosage form, route of administration, clinical trials, regulatory approval, and marketing authorizations

    A Clinical Insight on New Discovered Molecules and Repurposed Drugs for the Treatment of COVID-19

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began churning out incredulous terror in December 2019. Within several months from its first detection in Wuhan, SARS-CoV-2 spread to the rest of the world through droplet infection, making it a pandemic situation and a healthcare emergency across the globe. The available treatment of COVID-19 was only symptomatic as the disease was new and no approved drug or vaccine was available. Another challenge with COVID-19 was the continuous mutation of the SARS-CoV-2 virus. Some repurposed drugs, such as hydroxychloroquine, chloroquine, and remdesivir, received emergency use authorization in various countries, but their clinical use is compromised with either severe and fatal adverse effects or nonavailability of sufficient clinical data. Molnupiravir was the first molecule approved for the treatment of COVID-19, followed by Paxlovid&trade;, monoclonal antibodies (MAbs), and others. New molecules have variable therapeutic efficacy against different variants or strains of SARS-CoV-2, which require further investigations. The aim of this review is to provide in-depth information on new molecules and repurposed drugs with emphasis on their general description, mechanism of action (MOA), correlates of protection, dose and dosage form, route of administration, clinical trials, regulatory approval, and marketing authorizations

    Image_1_Brain augmentation and neuroscience technologies: current applications, challenges, ethics and future prospects.JPEG

    No full text
    Ever since the dawn of antiquity, people have strived to improve their cognitive abilities. From the advent of the wheel to the development of artificial intelligence, technology has had a profound leverage on civilization. Cognitive enhancement or augmentation of brain functions has become a trending topic both in academic and public debates in improving physical and mental abilities. The last years have seen a plethora of suggestions for boosting cognitive functions and biochemical, physical, and behavioral strategies are being explored in the field of cognitive enhancement. Despite expansion of behavioral and biochemical approaches, various physical strategies are known to boost mental abilities in diseased and healthy individuals. Clinical applications of neuroscience technologies offer alternatives to pharmaceutical approaches and devices for diseases that have been fatal, so far. Importantly, the distinctive aspect of these technologies, which shapes their existing and anticipated participation in brain augmentations, is used to compare and contrast them. As a preview of the next two decades of progress in brain augmentation, this article presents a plausible estimation of the many neuroscience technologies, their virtues, demerits, and applications. The review also focuses on the ethical implications and challenges linked to modern neuroscientific technology. There are times when it looks as if ethics discussions are more concerned with the hypothetical than with the factual. We conclude by providing recommendations for potential future studies and development areas, taking into account future advancements in neuroscience innovation for brain enhancement, analyzing historical patterns, considering neuroethics and looking at other related forecasts.</p
    corecore