37 research outputs found

    Depletion of CLK2 sensitizes glioma stem-like cells to PI3K/mTOR and FGFR inhibitors.

    Get PDF
    The Cdc2-like kinases (CLKs) regulate RNA splicing and have been shown to suppress cell growth. Knockdown of CLK2 was found to block glioma stem-like cell (GSC) growth in vivo through the AKT/FOXO3a/p27 pathway without activating mTOR and MAPK signaling, suggesting that these pathways mediate resistance to CLK2 inhibition. We identified CLK2 binding partners using immunoprecipitation assays and confirmed their interactions in vitro in GSCs. We then tested the cellular viability of several signaling inhibitors in parental and CLK2 knockdown GSCs. Our results demonstrate that CLK2 binds to 14-3-3Ï„ isoform and prevents its ubiquitination in GSCs. Stable CLK2 knockdown increased PP2A activity and activated PI3K signaling. Treatment with a PI3K/mTOR inhibitor in CLK2 knockdown cells led to a modest reduction in cell viability compared to drug treatment alone at a lower dose. However, FGFR inhibitor in CLK2 knockdown cells led to a decrease in cell viability and increased apoptosis. Reduced expression of CLK2 in glioblastoma, in combination with FGFR inhibitors, led to synergistic apoptosis induction and cell cycle arrest compared to blockade or either kinase alone

    The polo-like kinase 1 inhibitor volasertib synergistically increases radiation efficacy in glioma stem cells.

    Get PDF
    Background: Despite the availability of hundreds of cancer drugs, there is insufficient data on the efficacy of these drugs on the extremely heterogeneous tumor cell populations of glioblastoma (GBM). Results: The PKIS of 357 compounds was initially evaluated in 15 different GSC lines which then led to a more focused screening of the 21 most highly active compounds in 11 unique GSC lines using HTS screening for cell viability. We further validated the HTS result with the second-generation PLK1 inhibitor volasertib as a single agent and in combination with ionizing radiation (IR). Conclusions: Our results reinforce the potential therapeutic efficacy of volasertib in combination with radiation for the treatment of GBM. Methods: We used high-throughput screening (HTS) to identify drugs, out of 357 compounds in the published Protein Kinase Inhibitor Set, with the greatest efficacy against a panel of glioma stem cells (GSCs), which are representative of the classic cancer genome atlas (TCGA) molecular subtypes. Oncotarget 2018; 9(8):10497-10509

    Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9

    Get PDF
    Glioblastoma (GBM) is a highly infiltrative brain tumor in which cells with properties of stem cells, called glioblastoma stem cells (GSCs), have been identified. In general, the dominant view is that GSCs are responsible for the initiation, progression, invasion and recurrence of this tumor. In this study, we addressed the question whether the differentiation status of GBM cells is associated with their invasive capacity. For this, several primary GBM cell lines were used, cultured either as neurospheres known to enrich for GSCs or in medium supplemented with 10% FCS that promotes differentiation. The differentiation state of the cells was confirmed by determining the expression of stem cell and differentiation markers. The migration/invasion potential of these cells was tested using in vitro assays and intracranial mouse models. Interestingly, we found that serum-induced differentiation enhanced the invasive potential of GBM cells, which was associated with enhanced MMP9 expression. Chemical inhibition of MMP9 significantly reduced the invasive potential of differentiated cells in vitro. Furthermore, the serum-differentiated cells could revert back to an undifferentiated/stem cell state that were able to form neurospheres, although with a reduced efficiency as compared to non-differentiated counterparts. We propose a model in which activation of the differentiation program in GBM cells enhances their infiltrative potential and that depending on microenvironmental cues a significant portion of these cells are able to revert back to an undifferentiated state with enhanced tumorigenic potential. Thus, effective therapy should target both GSCs and differentiated offspring and targeting of differentiation-associated pathways may offer therapeutic opportunities to reduce invasive growth of GBM

    GPR56/ADGRG1 Inhibits Mesenchymal Differentiation and Radioresistance in Glioblastoma

    Get PDF
    A mesenchymal transition occurs both during the natural evolution of glioblastoma (GBM) and in response to therapy. Here, we report that the adhesion G-protein-coupled receptor, GPR56/ADGRG1, inhibits GBM mesenchymal differentiation and radioresistance. GPR56 is enriched in proneural and classical GBMs and is lost during their transition toward a mesenchymal subtype. GPR56 loss of function promotes mesenchymal differentiation and radioresistance of glioma initiating cells both in vitro and in vivo. Accordingly, a low GPR56-associated signature is prognostic of a poor outcome in GBM patients even within non-G-CIMP GBMs. Mechanistically, we reveal GPR56 as an inhibitor of the nuclear factor kappa B (NF-κB) signaling pathway, thereby providing the rationale by which this receptor prevents mesenchymal differentiation and radioresistance. A pan-cancer analysis suggests that GPR56 might be an inhibitor of the mesenchymal transition across multiple tumor types beyond GBM

    GPR56/ADGRG1 inhibits mesenchymal differentiation and radioresistance in glioblastoma

    Get PDF
    A mesenchymal transition occurs both during the natural evolution of glioblastoma (GBM) and in response to therapy. Here, we report that the adhesion G-protein-coupled receptor, GPR56/ADGRG1, inhibits GBM mesenchymal differentiation and radioresistance. GPR56 is enriched in proneural and classical GBMs and is lost during their transition toward a mesenchymal subtype. GPR56 loss of function promotes mesenchymal differentiation and radioresistance of glioma initiating cells both in vitro and in vivo. Accordingly, a low GPR56-associated signature is prognostic of a poor outcome in GBM patients even within non-G-CIMP GBMs. Mechanistically, we reveal GPR56 as an inhibitor of the nuclear factor kappa B (NF-κB) signaling pathway, thereby providing the rationale by which this receptor prevents mesenchymal differentiation and radioresistance. A pan-cancer analysis suggests that GPR56 might be an inhibitor of the mesenchymal transition across multiple tumor types beyond GBM

    In-vitro differentiation induction of neural stem cells

    No full text
    Neurale stamcellen maken de drie belangrijkste celtypes van ons zenuwstelsel aan. Veerakumar Balasubramaniyan onderzocht hoe neurale stamcellen kunnen worden aangezet tot het aanmaken van specifieke neurale celtypes. Met behulp van genetische technieken lukte het hem oligodendrocyten te verkrijgen: cellen die de isolerende laag rondom zenuwvezels vormen. Deze cellen bleken in staat na transplantatie in de hersenen van muizen met MS, kale zenuwvezels te "isoleren".

    Oligodendrocyte differentiation and implantation:new insights for remyelinating cell therapy

    No full text
    Purpose of review Recent research on oligodendrocyte development has yielded new insights on the involvement of morphogens and differentiation factors in oligodendrogenesis. This knowledge has improved strategies to control neural stem cell-derived oligodendrocyte differentiation and functional maturation in vitro. In this review, we highlight the current knowledge on oligodendrocyte differentiation and discuss the novel possibilities of neural stem cell-derived oligodendrocytes for graft-based remyelination therapy, for example, for multiple sclerosis. Recent findings Detailed insight into the cellular and molecular processes of embryonic and adult oligodendrogenesis has extended considerably in the past 2 years. Application of extrinsic factors and manipulation of intrinsic factors in neural stem cells have yielded convincing oligodendrocyte differentiation strategies. In addition, the recent groundbreaking developments regarding induced pluripotent stem cells generated from easily accessible somatic cells seem to offer an almost inexhaustible source for transplantable, autologous neural stem cells. Moreover, new approaches to optimize the implantation site for oligodendrocyte survival and functionality have improved the feasibility of stem cell-based oligodendrocyte replacement therapy. Summary Loss of myelin in demyelinating diseases is only partly restored by endogenous oligodendrocyte precursor cells. Application of optimally functional, neural stem cell-derived oligodendrocyte precursors at the lesion site has become a realistic therapeutic approach to promote the remyelination process

    TGF-beta as a therapeutic target in high grade gliomas - Promises and challenges

    No full text
    <p>Transforming growth factor-beta (TGF-beta) is a cytokine with a key role in tissue homeostasis and cancer. TGF-beta elicits both tumor suppressive and tumor promoting functions during cancer progression, in a wide range of cancers. Here, we review the tumor promoting function of TGF-beta and its possible promise as a therapeutic target in high grade gliomas, including glioblastoma multiforme (GBM), a disease with very poor prognosis. TGF-beta signaling is highly active in high grade gliomas and elevated TGF-beta activity has been associated with poor clinical outcome in this deadly disease. Common features of GBMs include fast cell proliferation, invasion into normal brain parenchyma, hypoxia, high angiogenic - and immunosuppressive activity, characteristics that all have been linked to activation of the TGF-beta pathway. TGF-beta signaling has also been connected with the cancer stem cell (CSC) phenotype in GBM. CSCs represent a subset of GBM cells thought to be responsible for tumor initiation, progression and relapse of disease. Following the description of these different properties of TGF-beta signaling and the underlying mechanisms identified thus far, the promise of TGF-beta targeted therapy in malignant gliomas is discussed. Several drugs targeting TGF-beta signaling have been developed that showed potent antitumor activity in preclinical models. A number of agents are currently evaluated in early clinical studies in glioma patients. Available results of these studies are highlighted and a perspective on the promise of TGF-beta-targeted therapy is given. (C) 2012 Elsevier Inc. All rights reserved.</p>

    Differentiation of Neural Stem Cells into Oligodendrocytes:Involvement of the Polycomb Group Protein Ezh2

    No full text
    The mechanisms underlying the regulation of neural stem cell (NSC) renewal and maintenance of their multipotency are still not completely understood. Self-renewal of stem cells in general implies repression of genes that encode for cell lineage differentiation. Enhancer of zeste homolog 2 (Ezh2) is a Polycomb group protein involved in stem cell renewal and maintenance by inducing gene silencing via histone methylation and deacetylation. To establish the role of Ezh2 in the maintenance and differentiation of NSCs, we have examined the expression of Ezh2 in NSCs isolated from embryonic (embryonic day 14) mice during proliferation and differentiation in vitro. Our results show that Ezh2 is highly expressed in proliferating NSCs. In accordance with its suggested role as a transcription repressor, the expression of Ezh2 decreased when the NSCs differentiated into neurons and was completely suppressed during differentiation into astrocytes. Surprisingly, Ezh2 remained highly expressed in NSCs that differentiated into an oligodendrocytic cell lineage, starting from oligodendrocyte precursor cells (OPCs) up to the immature (premyelinating) oligodendrocyte stage. To further establish the role of Ezh2 in NSC differentiation, we silenced and induced overexpression of the Ezh2 gene in NSCs. High levels of Ezh2 in differentiating NSCs appeared to be associated with an increase in oligodendrocytes and a reduction in astrocytes, whereas low levels of Ezh2 led to completely opposite effects. The increase in the number of oligodendrocytes induced by enhanced expression of Ezh2 could be ascribed to stimulation of OPC proliferation although stimulation of oligodendrocyte differentiation cannot be excluded. STEM CELLS 2008;26:2875-288
    corecore