20 research outputs found

    The necessity of drawing up the annual production plan and the importance of establishment crop structure for next agricultural year

    Get PDF
    Planning represents establishment and substantiate the objectives, accomplish tasks and necessary resources for appropriate period plan ( of perspective, annual, quarterly, monthly). Drawing up annual production plan into a ferm is required primarily for evolution or involution recorded by economical phenomenes, which directly determines the operation of the farm. After determining the annual production plan can establish structures and cultures for the next agricultural year using modeling and simulation methods. Following the application of modeling and simulation methods in a farm resulting optimal dimensions of business operations with profit maximization in terms of economic efficiency increased

    In silico Identification of Disrupted Myocardial Calcium Homeostasis as Proarrhythmic Trigger in Arrhythmogenic Cardiomyopathy

    Get PDF
    Background: Patients with arrhythmogenic cardiomyopathy may suffer from lethal ventricular arrhythmias. Arrhythmogenic cardiomyopathy is predominantly triggered by mutations in plakophilin-2, a key component of cell-to-cell adhesion and calcium cycling regulation in cardiomyocytes. Calcium dysregulation due to plakophilin-2 mutations may lead to arrhythmias but the underlying pro-arrhythmic mechanisms remain unclear.Aim: To unravel the mechanisms by which calcium-handling abnormalities in plakophilin-2 loss-of-function may contribute to proarrhythmic events in arrhythmogenic cardiomyopathy.Methods: We adapted a computer model of mouse ventricular electrophysiology using recent experimental calcium-handling data from plakophilin-2 conditional knock-out (PKP2-cKO) mice. We simulated individual effects of beta-adrenergic stimulation, modifications in connexin43-mediated calcium entry, sodium-calcium exchanger (NCX) activity and ryanodine-receptor 2 (RyR2) calcium affinity on cellular electrophysiology and occurrence of arrhythmogenic events (delayed-afterdepolarizations). A population-of-models approach was used to investigate the generalizability of our findings. Finally, we assessed the potential translation of proposed mechanisms to humans, using a human ventricular cardiomyocyte computational model.Results: The model robustly reproduced the experimental calcium-handling changes in PKP2-cKO cardiomyocytes: an increased calcium transient amplitude (562 vs. 383 nM), increased diastolic calcium (120 vs. 91 nM), reduced L-type calcium current (15.0 vs. 21.4 pA/pF) and an increased free SR calcium (0.69 vs. 0.50 mM). Under beta-adrenergic stimulation, PKP2-cKO models from the population of models (n = 61) showed a higher susceptibility to delayed-afterdepolarizations compared to control (41 vs. 3.3%). Increased connexin43-mediated calcium entry further elevated the number of delayed-afterdepolarizations (78.7%, 2.5-fold increase in background calcium influx). Elevated diastolic cleft calcium appeared responsible for the increased RyR2-mediated calcium leak, promoting delayed-afterdepolarizations occurrence. A reduction in RyR2 calcium affinity prevented delayed-afterdepolarizations in PKP2-cKO models (24.6 vs. 41%). An additional increase in INCX strongly reduced delayed-afterdepolarizations occurrence, by lowering diastolic cleft calcium levels. The human model showed similar outcomes, suggesting a potential translational value of these findings.Conclusion: Beta-adrenergic stimulation and connexin43-mediated calcium entry upon loss of plakophilin-2 function contribute to generation of delayed-afterdepolarizations. RyR2 and NCX dysregulation play a key role in modulating these proarrhythmic events. This work provides insights into potential future antiarrhythmic strategies in arrhythmogenic cardiomyopathy due to plakophilin-2 loss-of-function

    Adrenergic regulation of conduction velocity in cultures of immature cardiomyocytes

    No full text
    During cardiac maturation, increased exposure of the heart to circulating catecholamines correlates with increased conduction velocity and growth of the heart. We used an in vitro approach to study the underlying mechanisms of adrenergic stimulation induced changes in conduction velocity. By combining functional measurements and molecular techniques, we were able to demonstrate that the increased conduction velocity after β-adrenergic stimulation is probably not caused by changes in intercellular coupling. Instead, RT-PCR experiments and action potential measurements have shown an increased excitability that may well explain the observed increase in conduction velocity. Apart from being relevant to cardiac maturation, our findings are relevant in the context of stem cells and cardiac repair. Preconditioning of stem cell derived cardiomyocytes may help to enhance electrical maturation of de novo generated cardiomyocytes and consequently reduce their proarrhythmogenic potential. (Neth Heart J 2008;16:106-9.
    corecore