56 research outputs found
A comparative analysis of fruit fly and human glutamate dehydrogenases in Drosophila melanogaster sperm development
Glutamate dehydrogenases are enzymes that take part in both amino acid and energy metabolism. Their role is clear in many biological processes, from neuronal function to cancer development. The putative testis-specific Drosophila glutamate dehydrogenase, Bb8, is required for male fertility and the development of mitochondrial derivatives in spermatids. Testis-specific genes are less conserved and could gain new functions, thus raising a question whether Bb8 has retained its original enzymatic activity. We show that while Bb8 displays glutamate dehydrogenase activity, there are significant functional differences between the housekeeping Gdh and the testis-specific Bb8. Both human GLUD1 and GLUD2 can rescue the bb8 ms mutant phenotype, with superior performance by GLUD2. We also tested the role of three conserved amino acids observed in both Bb8 and GLUD2 in Gdh mutants, which showed their importance in the glutamate dehydrogenase function. The findings of our study indicate that Drosophila Bb8 and human GLUD2 could be novel examples of convergent molecular evolution. Furthermore, we investigated the importance of glutamate levels in mitochondrial homeostasis during spermatogenesis by ectopic expression of the mitochondrial glutamate transporter Aralar1, which caused mitochondrial abnormalities in fly spermatids. The data presented in our study offer evidence supporting the significant involvement of glutamate metabolism in sperm development
Evolutionary mode for the functional preservation of fast-evolving Drosophila telomere capping proteins
DNA end protection is fundamental for the long-term preservation of the genome. In vertebrates the Shelterin protein complex protects telomeric DNA ends, thereby contributing to the maintenance of genome integrity. In the Drosophila genus, this function is thought to be performed by the Terminin complex, an assembly of fast-evolving subunits. Considering that DNA end protection is fundamental for successful genome replication, the accelerated evolution of Terminin subunits is counterintuitive, as conservation is supposed to maintain the assembly and concerted function of the interacting partners. This problem extends over Drosophila telomere biology and provides insight into the evolution of protein assemblies. In order to learn more about the mechanistic details of this phenomenon we have investigated the intra- and interspecies assemblies of Verrocchio and Modigliani, two Terminin subunits using in vitro assays. Based on our results and on homology-based three-dimensional models for Ver and Moi, we conclude that both proteins contain Ob-fold and contribute to the ssDNA binding of the Terminin complex. We propose that the preservation of Ver function is achieved by conservation of specific amino acids responsible for folding or localized in interacting surfaces. We also provide here the first evidence on Moi DNA binding
Biofilm formation initiating rotifer-specific biopolymer and its predicted components
The rotifer-specific biopolymer, namely Rotimer, is a recently discovered group of the biomolecule family. Rotimer has an active role in the biofilm formation initiated by rotifers (e.g., Euchlanis dilatata or Adineta vaga) or in the female-male sexual interaction of monogononts. To understand the Ca2+- and polarity-dependent formation of this multifunctional viscoelastic material, it is essential to explore its molecular composition. The investigation of the rotifer-enhanced biofilm and Rotimer-inductor conglomerate (RIC) formation yielded several protein candidates to predict the Rotimer-specific main components. The exudate of E. dilatata males was primarily applied from different biopolimer-containing samples (biofilm or RIC). The advantage of males over females lies in their degenerated digestive system and simple anatomy. Thus, their exudate is less contaminated with food and endosymbiont elements. The sequenced and annotated genome and transcriptome of this species opened the way for identifying Rotimer proteins by mass spectrometry. The predicted rotifer-biopolymer forming components are SCO-spondins and 14-3-3 protein. The characteristics of Rotimer are similar to Reissner's fiber, which is found in the central nervous system of vertebrates and is mainly formed from SCO-spondins. This molecular information serves as a starting point for its interdisciplinary investigation and application in biotechnology, biomedicine, or neurodegeneration-related drug development
Testis-Specific Bb8 Is Essential in the Development of Spermatid Mitochondria.
Mitochondria are essential organelles of developing spermatids in Drosophila, which undergo dramatic changes in size and shape after meiotic division, where mitochondria localized in the cytoplasm, migrate near the nucleus, aggregate, fuse and create the Nebenkern. During spermatid elongation the two similar mitochondrial derivatives of the Nebenkern start to elongate parallel to the axoneme. One of the elongated mitochondrial derivatives starts to lose volume and becomes the minor mitochondrial derivative, while the other one accumulates paracrystalline and becomes the major mitochondrial derivative. Proteins and intracellular environment that are responsible for cyst elongation and paracrystalline formation in the major mitochondrial derivative need to be identified. In this work we investigate the function of the testis specific big bubble 8 (bb8) gene during spermatogenesis. We show that a Minos element insertion in bb8 gene, a predicted glutamate dehydrogenase, causes recessive male sterility. We demonstrate bb8 mRNA enrichment in spermatids and the mitochondrial localisation of Bb8 protein during spermatogenesis. We report that megamitochondria develop in the homozygous mutant testes, in elongating spermatids. Ultrastructural analysis of the cross section of elongated spermatids shows enlarged mitochondria and the production of paracrystalline in both major and minor mitochondrial derivatives. Our results suggest that the Bb8 protein and presumably glutamate metabolism has a crucial role in the normal development and establishment of the identity of the mitochondrial derivatives during spermatid elongation
TAF10 and TAF10b partially redundant roles during Drosophila melanogaster morphogenesis
Transcription of eukaryotic genes requires the cooperative action of the RNA polymerase complex, the general transcription factors (TFIIB, TFIID, TFIIE, TFIIF and TFIIH) and chromatin modifiers. The TFIID complex contributes to transcriptional activation by several mechanisms and has a subunit with associated histone acetyltransferase (HAT) activity. The histone modifier SAGA complex has both HAT and deubiquitylase (DUB) activities. TFIID and SAGA share several TBP-associated factors (TAFs), but not their HAT subunit. Recently, several duplicated TAF proteins have been identified in higher eukaryotes, but their functional diversity has been so far poorly characterized. Here, we report the functional similarities and differences of TAF10 and TAF10b, the two TAF10 orthologs of Drosophila melanogaster. Results from in silico modeling suggest that dTAF10 and dTAF10b have similar secondary structures characterized by the presence of a histone-fold domain. Additionally, dTAF10 and dTAF10b share interaction partners and show similar expression patterns in neuronal tissues. Nonetheless, dTAF10 and dTAF10b seem to have partly distinct functions. To investigate their roles, we generated dTaf10-dTaf10b double-mutants and rescued the mutant flies with transgenes, which allowed the translation of either dTAF10 or dTAF10b protein. We found that the loss of dTAF10b resulted in pupal lethality, while animals lacking dTAF10 were able to form puparium. dTaf10 mutant adults showed distorted eye morphology. During DNA repair, dTAF10 and dTAF10b act redundantly, suggesting that these proteins have distinct but partially overlapping functions
- …