1,077 research outputs found

    Slow inactivation does not affect movement of the fast inactivation gate in voltage-gated Na+ channels.

    Get PDF
    Voltage-gated Na+ channels exhibit two forms of inactivation, one form (fast inactivation) takes effect on the order of milliseconds and the other (slow inactivation) on the order of seconds to minutes. While previous studies have suggested that fast and slow inactivation are structurally independent gating processes, little is known about the relationship between the two. In this study, we probed this relationship by examining the effects of slow inactivation on a conformational marker for fast inactivation, the accessibility of a site on the Na+ channel III-IV linker that is believed to form a part of the fast inactivation particle. When cysteine was substituted for phenylalanine at position 1304 in the rat skeletal muscle sodium channel (microl), application of [2-(trimethylammonium)ethyl]methanethiosulfonate (MTS-ET) to the cytoplasmic face of inside-out patches from Xenopus oocytes injected with F1304C RNA dramatically disrupted fast inactivation and displayed voltage-dependent reaction kinetics that closely paralleled the steady state availability (hinfinity) curve. Based on this observation, the accessibility of cys1304 was used as a conformational marker to probe the position of the fast inactivation gate during the development of and the recovery from slow inactivation. We found that burial of cys1304 is not altered by the onset of slow inactivation, and that recovery of accessibility of cys1304 is not slowed after long (2-10 s) depolarizations. These results suggest that (a) fast and slow inactivation are structurally distinct processes that are not tightly coupled, (b) fast and slow inactivation are not mutually exclusive processes (i.e., sodium channels may be fast- and slow-inactivated simultaneously), and (c) after long depolarizations, recovery from fast inactivation precedes recovery from slow inactivation

    Faraday conversion and magneto-ionic variations in Fast Radio Bursts

    Get PDF
    The extreme, time-variable Faraday rotation observed in the repeating fast radio burst (FRB) 121102 and its associated persistent synchrotron source demonstrates that some FRBs originate in dense, dynamic and possibly relativistic magneto-ionic environments. Here we show that besides rotation of the linear-polarisation vector (Faraday rotation), such media can generally convert linear to circular polarisation (Faraday conversion). We use non-detection of Faraday conversion, and the temporal variation in Faraday rotation and dispersion in bursts from FRB\,121102 to constrain models where the progenitor inflates a relativistic nebula (persistent source) confined by a cold dense medium (e.g. supernova ejecta). We find that the persistent synchrotron source, if composed of an electron-proton plasma, must be an admixture of relativistic and non-relativistic (Lorentz factor γ<5\gamma<5) electrons. Furthermore we independently constrain the magnetic field in the cold confining medium, which provides the Faraday rotation, to be between 1010 and 30 30\,mG. This value is close to the equipartition magnetic field of the confined persistent source implying a self-consistent and over-constrained model that can explain the observations.Comment: Submitted to MNRAS; An error in arguments of sec 2.2 of the previous version has been correcte

    GOOD GOVERNANCE AND PUBLIC POLICY IN INDIA

    Get PDF
    Good Governance is required to ensure that the public policies have their desired effect. In the recent past, issues of governance have received serious attention from the researchers, policy makers and international development community. Today, ‘governance’ not only occupies centre stage in the development discourse but is also considered as a crucial element to be incorporated in the development strategy. The major focus of the study is on Good Governance and public policy process in India. In this context the present research paper discusses the basic concepts and elements of Good Governance in the first part of the article. The need of the Good Governance in the effective implementation of public policies has been elaborately discussed and the nature of public policy has been mentioned in the next part Various stages and constraints that are involved in public policy process and need for an effective policy has been discussed in detail in subsequent parts.&nbsp

    On associating Fast Radio Bursts with afterglows

    Get PDF
    A radio source that faded over six days, with a redshift of z≈0.5z\approx0.5 host, has been identified by Keane et al. (2016) as the transient afterglow to a fast radio burst (FRB 150418). We report follow-up radio and optical observations of the afterglow candidate and find a source that is consistent with an active galactic nucleus. If the afterglow candidate is nonetheless a prototypical FRB afterglow, existing slow-transient surveys limit the fraction of FRBs that produce afterglows to 0.25 for afterglows with fractional variation, m=2∣S1−S2∣/(S1+S2)≥0.7m=2|S_1-S_2|/(S_1+S_2)\geq0.7, and 0.07 for m≥1m\geq1, at 95% confidence. In anticipation of a barrage of bursts expected from future FRB surveys, we provide a simple framework for statistical association of FRBs with afterglows. Our framework properly accounts for statistical uncertainties, and ensures consistency with limits set by slow-transient surveys.Comment: Accepted version (ApJL

    Scintillation noise in widefield radio interferometry

    Get PDF
    In this paper, we consider random phase fluctuations imposed during wave propagation through a turbulent plasma (e.g. ionosphere) as a source of additional noise in interferometric visibilities. We derive expressions for visibility variance for the wide field of view case (FOV∼10\sim10 deg) by computing the statistics of Fresnel diffraction from a stochastic plasma, and provide an intuitive understanding. For typical ionospheric conditions (diffractive scale ∼5−20\sim 5-20 km at 150150 MHz), we show that the resulting ionospheric `scintillation noise' can be a dominant source of uncertainty at low frequencies (ν≲200\nu \lesssim 200 MHz). Consequently, low frequency widefield radio interferometers must take this source of uncertainty into account in their sensitivity analysis. We also discuss the spatial, temporal, and spectral coherence properties of scintillation noise that determine its magnitude in deep integrations, and influence prospects for its mitigation via calibration or filtering.Comment: Accepted versio

    Faraday conversion and magneto-ionic variations in fast radio bursts

    Get PDF
    The extreme, time-variable Faraday rotation observed in the repeating fast radio burst (FRB) 121102 and its associated persistent synchrotron source demonstrates that some FRBs originate in dense, dynamic, and possibly relativistic magneto-ionic environments. Besides rotation of the linear polarization vector (Faraday rotation), such media can generally convert linear to circular polarization (Faraday conversion). We use non-detection of Faraday conversion, and the temporal variation in Faraday rotation and dispersion in bursts from FRB 121102 to constrain models where the progenitor inflates a relativistic nebula (persistent source) confined by a cold dense medium (e.g. supernova ejecta). We find that the persistent synchrotron source, if composed of an electron–proton plasma, must be an admixture of relativistic and non-relativistic (Lorentz factor γ < 5) electrons. Furthermore, we independently constrain the magnetic field in the cold confining medium, which provides the Faraday rotation, to be between 10 and 30 mG. This value is close to the equipartition magnetic field of the confined persistent source implying a self-consistent and overconstrained model that can explain the observations

    Prospects for detecting the 21cm forest from the diffuse intergalactic medium with LOFAR

    Get PDF
    We discuss the feasibility of the detection of the 21cm forest in the diffuse IGM with the radio telescope LOFAR. The optical depth to the 21cm line has been derived using simulations of reionization which include detailed radiative transfer of ionizing photons. We find that the spectra from reionization models with similar total comoving hydrogen ionizing emissivity but different frequency distribution look remarkably similar. Thus, unless the reionization histories are very different from each other (e.g. a predominance of UV vs. x-ray heating) we do not expect to distinguish them by means of observations of the 21cm forest. Because the presence of a strong x-ray background would make the detection of 21cm line absorption impossible, the lack of absorption could be used as a probe of the presence/intensity of the x-ray background and the thermal history of the universe. Along a random line of sight LOFAR could detect a global suppression of the spectrum from z>12, when the IGM is still mostly neutral and cold, in contrast with the more well-defined, albeit broad, absorption features visible at lower redshift. Sharp, strong absorption features associated with rare, high density pockets of gas could be detected also at z~7 along preferential lines of sight.Comment: 12 pages, 13 figures. MNRAS, in pres
    • …
    corecore