64 research outputs found

    Editorial: Inter-organ crosstalk during exercise in health and disease: Extracellular vesicles as new kids on the block

    Get PDF
    Within exercise physiology, the study of factors potentially mediating interorgan crosstalk during and after exercise is a fascinating field of research. As exercise activates a plethora of metabolic pathways in several tissues, organs and systems, examining the underlying biological mechanisms contributing to exercise related metabolic benefits is imperative. Since two decades, the skeletal muscle is known to secrete humoral factors into the circulation in response to exercise, originally described as “myokines” by Pedersen et al. (2003). These myokines are now well known and extensively studied in the field of exercise science (Pedersen and Febbraio, 2012). Interestingly, exercise also triggers other metabolic organs to release similar factors arising from the heart, liver, white and brown adipose tissue, and the nervous system (Chow et al., 2022). These “exerkines” (Safdar et al., 2016) have been recognized to comprise an extensive range of biologically active signalling molecules, including cytokines, lipids, metabolites and (noncoding) nucleic acids, as recently reviewed (Chow et al., 2022)

    Evidence of MyomiR Regulation of the Pentose Phosphate Pathway during Mechanical Load-Induced Hypertrophy

    Get PDF
    Many of the molecular and cellular mechanisms discovered to regulate skeletal muscle hypertrophy were first identified using the rodent synergist ablation model. This model reveals the intrinsic capability and necessary pathways of skeletal muscle growth in response to mechanical overload (MOV). Reminiscent of the rapid cellular growth observed with cancer, we hypothesized that in response to MOV, skeletal muscle would undergo metabolic programming to sustain increased demands to support hypertrophy. To test this hypothesis, we analyzed the gene expression of specific metabolic pathways taken from transcriptomic microarray data of a MOV time course. We found an upregulation of genes involved in the oxidative branch of the pentose phosphate pathways (PPP) and mitochondrial branch of the folate cycle suggesting an increase in the production of NADPH. In addition, we sought to determine the potential role of skeletal muscle-enriched microRNA (myomiRs) and satellite cells in the regulation of the metabolic pathways that changed during MOV. We observed an inverse pattern in gene expression between muscle-enriched myomiR-1 and its known target gene glucose-6-phosphate dehydrogenase, G6pdx, suggesting myomiR regulation of PPP activation in response to MOV. Satellite cell fusion had a significant but modest impact on PPP gene expression. These transcriptomic findings suggest the robust muscle hypertrophy induced by MOV requires enhanced redox metabolism via PPP production of NADPH which is potentially regulated by a myomiR network

    Does a Hypertrophying Muscle Fibre Reprogramme its Metabolism Similar to a Cancer Cell?

    Get PDF
    In 1924, Otto Warburg asked “How does the metabolism of a growing tissue differ from that of a non-growing tissue?” Currently, we know that proliferating healthy and cancer cells reprogramme their metabolism. This typically includes increased glucose uptake, glycolytic flux and lactate synthesis. A key function of this reprogramming is to channel glycolytic intermediates and other metabolites into anabolic reactions such as nucleotide-RNA/DNA synthesis, amino acid-protein synthesis and the synthesis of, for example, acetyl and methyl groups for epigenetic modification. In this review, we discuss evidence that a hypertrophying muscle similarly takes up more glucose and reprogrammes its metabolism to channel energy metabolites into anabolic pathways. We specifically discuss the functions of the cancer-associated enzymes phosphoglycerate dehydrogenase and pyruvate kinase muscle 2 in skeletal muscle. In addition, we ask whether increased glucose uptake by a hypertrophying muscle explains why muscularity is often negatively associated with type 2 diabetes mellitus and obesity

    A prophylactic subcutaneous dose of the anticoagulant tinzaparin does not influence qPCR-based assessment of circulating levels of miRNA in humans

    Get PDF
    Circulating microRNAs (miRNAs) have become increasingly popular biomarker candidates in various diseases. However, heparin-based anticoagulants might affect the detection of target miRNAs in blood samples during quantitative polymerase chain reaction (qPCR)- based analysis of miRNAs involving RNA extraction, cDNA synthesis and the polymerase catalyzed reaction. Because low-molecular-weight heparins (LMWH) are widely used in routine healthcare, we aimed to investigate whether a prophylactic dose of the LMWH tinzaparin influences qPCR-based quantification of circulating miRNAs. A total of 30 subjects were included: 16 fracture patients with tinzaparin treatment and 14 non-fracture controls without anticoagulation therapy. To control for the effect of tinzaparin on miRNA analysis an identical concentration of synthetic miRNAs was added to plasma, isolated RNA and prepared complementary DNA (cDNA) from all samples in both groups. No significant difference was observed for cDNA synthesis or qPCR when comparing tinzaparin-treated patients with untreated controls. Among the tinzaparin-treated patients, plasma levels of six endogenous miRNAs (hsa-let-7i-5p, hsa-miR-30e-5p, hsa-miR-222-3p, hsa-miR-1-3p, hsamiR- 133a-3p, hsa-miR-133b) were measured before and one to six hours after a subcutaneous injection of tinzaparin 4500IU. No significant effect was observed for any of the investigated miRNAs. A prophylactic dose of 4500IU tinzaparin does not seem to affect cDNA synthesis or qRT-PCR-based quantification of circulating miRNAs

    Extracellular vesicle characteristics and micro RNA content in cerebral palsy and typically developed individuals at rest and in response to aerobic exercise.

    Get PDF
    In this study, the properties of circulating extracellular vesicles (EVs) were examined in cerebral palsy (CP) and typically developed (TD) individuals at rest and after aerobic exercise, focusing on the size, concentration, and microRNA cargo of EVs. Nine adult individuals with CP performed a single exercise bout consisting of 45 min of Frame Running, and TD participants completed either 45 min of cycling (n = 10; TD EX) or were enrolled as controls with no exercise (n = 10; TD CON). Blood was drawn before and 30 min after exercise and analyzed for EV concentration, size, and microRNA content. The size of EVs was similar in CP vs. TD, and exercise had no effect. Individuals with CP had an overall lower concentration (~25%, p \u3c 0.05) of EVs. At baseline, let-7a, let-7b and let-7e were downregulated in individuals with CP compared to TD (p \u3c 0.05), while miR-100 expression was higher, and miR-877 and miR-4433 lower in CP compared to TD after exercise (p \u3c 0.05). Interestingly, miR-486 was upregulated ~2-fold in the EVs of CP vs. TD both at baseline and after exercise. We then performed an in silico analysis of miR-486 targets and identified the satellite cell stemness factor Pax7 as a target of miR-486. C2C12 myoblasts were cultured with a miR-486 mimetic and RNA-sequencing was performed. Gene enrichment analysis revealed that several genes involved in sarcomerogenesis and extracellular matrix (ECM) were downregulated. Our data suggest that circulating miR-486 transported by EVs is elevated in individuals with CP and that miR-486 alters the transcriptome of myoblasts affecting both ECM- and sarcomerogenesis-related genes, providing a link to the skeletal muscle alterations observed in individuals with C

    Life-Long Reduction in MyomiR Expression Does Not Adversely Affect Skeletal Muscle Morphology

    Get PDF
    We generated an inducible, skeletal muscle-specific Dicer knockout mouse to deplete microRNAs in adult skeletal muscle. Following tamoxifen treatment, Dicer mRNA expression was significantly decreased by 87%. Wild-type (WT) and Dicer knockout (KO) mice were subjected to either synergist ablation or hind limb suspension for two weeks. There was no difference in muscle weight with hypertrophy or atrophy between WT and KO groups; however, even with the significant loss of Dicer expression, myomiR (miR-1, -133a and -206) expression was only reduced by 38% on average. We next aged WT and KO mice for ~22 months following Dicer inactivation to determine if myomiR expression would be further reduced over a prolonged timeframe and assess the effects of myomiR depletion on skeletal muscle phenotype. Skeletal muscle Dicer mRNA expression remained significantly decreased by 80% in old KO mice and sequencing of cloned Dicer mRNA revealed the complete absence of the floxed exons in KO skeletal muscle. Despite a further reduction of myomiR expression to ~50% of WT, no change was observed in muscle morphology between WT and KO groups. These results indicate the life-long reduction in myomiR levels did not adversely affect skeletal muscle phenotype and suggest the possibility that microRNA expression is uniquely regulated in skeletal muscle

    A Novel Tetracycline-Responsive Transgenic Mouse Strain for Skeletal Muscle-Specific Gene Expression

    Get PDF
    Background: The tetracycline-responsive system (Tet-ON/OFF) has proven to be a valuable tool for manipulating gene expression in an inducible, temporal, and tissue-specific manner. The purpose of this study was to create and characterize a new transgenic mouse strain utilizing the human skeletal muscle α-actin (HSA) promoter to drive skeletal muscle-specific expression of the reverse tetracycline transactivator (rtTA) gene which we have designated as the HSA-rtTA mouse. Methods: To confirm the HSA-rtTA mouse was capable of driving skeletal muscle-specific expression, we crossed the HSA-rtTA mouse with the tetracycline-responsive histone H2B-green fluorescent protein (H2B-GFP) transgenic mouse in order to label myonuclei. Results: Reverse transcription-PCR confirmed skeletal muscle-specific expression of rtTA mRNA, while single-fiber analysis showed highly effective GFP labeling of myonuclei in both fast- and slow-twitch skeletal muscles. Pax7 immunohistochemistry of skeletal muscle cross-sections revealed no appreciable GFP expression in satellite cells. Conclusions: The HSA-rtTA transgenic mouse allows for robust, specific, and inducible gene expression across muscles of different fiber types. The HSA-rtTA mouse provides a powerful tool to manipulate gene expression in skeletal muscle

    Integration of miRNA and mRNA expression profles reveals microRNA-regulated networks during muscle wasting in cardiac cachexia

    Get PDF
    Cardiac cachexia (CC) is a common complication of heart failure (HF) associated with muscle wasting and poor patient prognosis. Although different mechanisms have been proposed to explain muscle wasting during CC, its pathogenesis is still not understood. Here, we described an integrative analysis between miRNA and mRNA expression profiles of muscle wasting during CC. Global gene expression profiling identified 1,281 genes and 19 miRNAs differentially expressed in muscle wasting during CC. Several of these deregulated genes are known or putative targets of the altered miRNAs, including miR-29a-3p, miR-29b-3p, miR-210-5p, miR-214, and miR-489. Gene ontology analysis on integrative mRNA/miRNA expression profiling data revealed miRNA interactions affecting genes that regulate extra-cellular matrix (ECM) organization, proteasome protein degradation, citric acid cycle and respiratory electron transport. We further identified 11 miRNAs, including miR-29a-3p and miR-29b-3p, which target 21 transcripts encoding the collagen proteins related to ECM organization. Integrative miRNA and mRNA global expression data allowed us to identify miRNA target genes involved in skeletal muscle wasting in CC. Our functional experiments in C2C12 cells confirmed that miR-29b down-regulates collagen genes and contributes to muscle cell atrophy. Collectively, our results suggest that key ECM-associated miRNAs and their target genes may contribute to CC in HF

    Multi-transcriptome analysis following an acute skeletal muscle growth stimulus yields tools for discerning global and MYC regulatory networks

    Get PDF
    Myc is a powerful transcription factor implicated in epigenetic reprogramming, cellular plasticity, and rapid growth as well as tumorigenesis. Cancer in skeletal muscle is extremely rare despite marked and sustained Myc induction during loading-induced hypertrophy. Here, we investigated global, actively transcribed, stable, and myonucleus-specific transcriptomes following an acute hypertrophic stimulus in mouse plantaris. With these datasets, we define global and Myc-specific dynamics at the onset of mechanical overload-induced muscle fiber growth. Data collation across analyses reveals an under-appreciated role for the muscle fiber in extracellular matrix remodeling during adaptation, along with the contribution of mRNA stability to epigenetic-related transcript levels in muscle. We also identify Runx1 and Ankrd1 (Marp1) as abundant myonucleus-enriched loading-induced genes. We observed that a strong induction of cell cycle regulators including Myc occurs with mechanical overload in myonuclei. Additionally, in vivo Myc-controlled gene expression in the plantaris was defined using a genetic muscle fiber-specific doxycycline-inducible Myc-overexpression model. We determined Myc is implicated in numerous aspects of gene expression during early-phase muscle fiber growth. Specifically, brief induction of Myc protein in muscle represses Reverbα, Reverbβ, and Myh2 while increasing Rpl3, recapitulating gene expression in myonuclei during acute overload. Experimental, comparative, and in silico analyses place Myc at the center of a stable and actively transcribed, loading-responsive, muscle fiber–localized regulatory hub. Collectively, our experiments are a roadmap for understanding global and Myc-mediated transcriptional networks that regulate rapid remodeling in postmitotic cells. We provide open webtools for exploring the five RNA-seq datasets as a resource to the field

    Bovine Milk Extracellular Vesicles (EVs) Modification Elicits Skeletal Muscle Growth in Rats

    Get PDF
    The current study investigated how bovine milk extracellular vesicles (EVs) affected rotarod performance and biomarkers of skeletal muscle physiology in young, growing rats. Twenty-eight-day Fisher 344 rats were provided an AIN-93G-based diet for 4 weeks that either remained unadulterated [EVs and RNA-sufficient (ERS; n = 12)] or was sonicated [EVs and RNA-depleted (ERD; n = 12)]. Prior to (PRE) and on the last day of the intervention (POST), animals were tested for maximal rotarod performance. Following the feeding period, the gastrocnemius muscle was analyzed at the histological, biochemical, and molecular levels and was also used to measure mitochondrial function and reactive oxygen species (ROS) emission. A main effect of time was observed for rotarod time (PRE \u3e POST, p = 0.001). Terminal gastrocnemius mass was unaffected by diet, although gastrocnemius muscle fiber cross sectional area was 11% greater (p = 0.018) and total RNA (a surrogate of ribosome density) was 24% greater (p = 0.001) in ERD. Transcriptomic analysis of the gastrocnemius indicated that 22 mRNAs were significantly greater in ERS versus ERD (p \u3c 0.01), whereas 55 mRNAs were greater in ERD versus ERS (p \u3c 0.01). There were no differences in gastrocnemius citrate synthase activity or mitochondrial coupling (respiratory control ratio), although mitochondrial ROS production was lower in ERD gastrocnemius (p = 0.016), which may be explained by an increase in glutathione peroxidase protein levels (p = 0.020) in ERD gastrocnemius. Dietary EVs profiling confirmed that sonication in the ERD diet reduced EVs content by ∼60%. Our findings demonstrate that bovine milk EVs depletion through sonication elicits anabolic and transcriptomic effects in the gastrocnemius muscle of rapidly maturing rats. While this did not translate into a functional outcome between diets (i.e., rotarod performance), longer feeding periods may be needed to observe such functional effects
    corecore