40 research outputs found

    A Majority of Solar Wind Intervals Support Ion-Driven Instabilities

    Full text link
    We perform a statistical assessment of solar wind stability at 1 AU against ion sources of free energy using Nyquist's instability criterion. In contrast to typically employed threshold models which consider a single free-energy source, this method includes the effects of proton and He2+^{2+} temperature anisotropy with respect to the background magnetic field as well as relative drifts between the proton core, proton beam, and He2+^{2+} components on stability. Of 309 randomly selected spectra from the Wind spacecraft, 53.7%53.7\% are unstable when the ion components are modeled as drifting bi-Maxwellians; only 4.5%4.5\% of the spectra are unstable to long-wavelength instabilities. A majority of the instabilities occur for spectra where a proton beam is resolved. Nearly all observed instabilities have growth rates Îł\gamma slower than instrumental and ion-kinetic-scale timescales. Unstable spectra are associated with relatively-large He2+^{2+} drift speeds and/or a departure of the core proton temperature from isotropy; other parametric dependencies of unstable spectra are also identified.Comment: 6 pages, 3 figures, 2 tables, accepted in Physical Review Letters; fixed typos in version

    The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during PSP Encounter 2

    Get PDF
    International audienceMagnetic field fluctuations in the solar wind are commonly observed to follow a power-law spectrum. Near proton-kinetic scales, a spectral break occurs that is commonly interpreted as a transition to kinetic turbulence. However, this transition is not yet entirely understood. By studying the scaling of the break with various plasma properties, it may be possible to constrain the processes leading to the onset of kinetic turbulence. Using data from the Parker Solar Probe, we measure the proton-scale break over a range of heliocentric distances, enabling a measurement of the transition from inertial to kinetic-scale turbulence under various plasma conditions. We find that the break frequency f(b) increases as the heliocentric distance r decreases in the slow solar wind following a power law of f(b) similar to r(-1.11). We also compare this to the characteristic plasma ion scales to relate the break to the possible physical mechanisms occurring at this scale. The ratio f(b)/f(c) (f(c) for Doppler-shifted ion cyclotron resonance scale) is close to unity and almost independent of plasma beta(p). While f(b)/f(p) (f(p) for Doppler-shifted proton thermal gyroradius) increases with beta(p) approaching to unity at larger beta(p), f(b)/f(d) (f(d) for Doppler-shifted proton inertial length) decreases with beta(p) from unity at small beta(p). Due to the large comparable Alfven and solar wind speeds, we analyze these results using both the standard and modified Taylor hypotheses, demonstrating the robust statistical results

    Kinetic-scale Spectral Features of Cross Helicity and Residual Energy in the Inner Heliosphere

    Get PDF
    In this work, we present the first results from the flux angle (FA) operation mode of the Faraday Cup instrument on board the Parker Solar Probe (PSP). The FA mode allows rapid measurements of phase space density fluctuations close to the peak of the proton velocity distribution function with a cadence of 293 Hz. This approach provides an invaluable tool for understanding kinetic-scale turbulence in the solar wind and solar corona. We describe a technique to convert the phase space density fluctuations into vector velocity components and compute several turbulence parameters, such as spectral index, residual energy, and cross helicity during two intervals when the FA mode was used in PSP's first encounter at 0.174 au distance from the Sun

    Evidence for electron Landau damping in space plasma turbulence

    Get PDF
    How turbulent energy is dissipated in weakly collisional space and astrophysical plasmas is a major open question. Here, we present the application of a field-particle correlation technique to directly measure the transfer of energy between the turbulent electromagnetic field and electrons in the Earth's magnetosheath, the region of solar wind downstream of the Earth's bow shock. The measurement of the secular energy transfer from the parallel electric field as a function of electron velocity shows a signature consistent with Landau damping. This signature is coherent over time, close to the predicted resonant velocity, similar to that seen in kinetic Alfven turbulence simulations, and disappears under phase randomisation. This suggests that electron Landau damping could play a significant role in turbulent plasma heating, and that the technique is a valuable tool for determining the particle energisation processes operating in space and astrophysical plasmas.STFC Ernest Rutherford Fellowship [ST/N003748/2]; NASA HSR grant [NNX16AM23G]; NSF CAREER Award [AGS-1054061]; NASA HGI grant [80NSSC18K0643]; NASA MMS GI grant [80NSSC18K1371]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Testing the effects of expansion on solar wind turbulence

    No full text
    We present a multi-spacecraft approach to test the predictions of recent studies on the effect of solar wind expansion on the radial spectral, variance, and local 3D anisotropies of the turbulence. We found that on small scales (5000–10,000 km) the power levels of the B-trace structure functions do not depend on the sampling direction with respect to the radial suggesting that on this scale the effect of expansion is small possibly due to fast turbulent timescales. On larger scales (110–135 R E ), the fluctuations of the radial magnetic field component are reduced by ~20% compared to the transverse (perpendicular to radial) ones, which could be due to expansion confining the fluctuations into the plane perpendicular to radial. For the local 3D spectral anisotropy, the B-trace structure functions showed dependence on the sampling direction with respect to radial. The anisotropy in the perpendicular plane is reduced when the increments are taken perpendicular with respect to radial, which could be an effect of expansion
    corecore