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Abstract

In this work, we present the first results from the flux angle (FA) operation mode of the Faraday Cup instrument on
board the Parker Solar Probe (PSP). The FA mode allows rapid measurements of phase space density fluctuations
close to the peak of the proton velocity distribution function with a cadence of 293 Hz. This approach provides an
invaluable tool for understanding kinetic-scale turbulence in the solar wind and solar corona. We describe a
technique to convert the phase space density fluctuations into vector velocity components and compute several
turbulence parameters, such as spectral index, residual energy, and cross helicity during two intervals when the FA
mode was used in PSP’s first encounter at 0.174 au distance from the Sun.

Unified Astronomy Thesaurus concepts: Heliosphere (711); Interplanetary turbulence (830); Solar wind (1534);
Magnetohydrodynamics (1964); Alfven waves (23)

1. Introduction

The solar wind is a hot, tenuous plasma propagating away
from the Sun’s surface, which is ubiquitously observed in a
turbulent state (Coleman 1968). Turbulence in the solar wind is
modeled as a cascade of energy from the outer scales to the
much smaller dissipative scales through an inertial range. In the
inertial range, the velocity and magnetic fluctuations are largely
perpendicular to the local magnetic field direction and the
spectral index of the power spectra of the magnetic and velocity
fluctuations are close to −5/3 and −3/2, respectively
(Coleman 1968; Matthaeus & Goldstein 1982; Podesta et al.
2007; Boldyrev et al. 2011). Below this range, roughly
coincident with the convected ion–kinetic scales, the magnetic
energy spectrum steepens and Alfvénic turbulence undergoes
a transition into dispersive kinetic Alfvén waves (Bale et al.
2005; Chen et al. 2013b). Between ion and electron scales,
the spectral index of the magnetic fluctuations is typically
between −2 and −4 (Leamon et al. 1998; Smith et al. 2006;
Alexandrova et al. 2009; Matteini et al. 2016).

In contrast to magnetic fields, the power spectrum of velocity
fluctuations in the kinetic range is much less understood largely
due to the fact that high-cadence plasma moment measure-
ments in the solar wind only recently became available. Studies
based on Spektr-R data (proton moments with 31 ms cadence
measured by six Faraday Cups) presented the first results on the

high-frequency part (up to 2 Hz) of the velocity power
spectrum, including the break frequency and spectral indices
(Šafránková et al. 2013a, 2013b, 2016; Riazantseva et al.
2017). Unfortunately, the lack of an operating magnetic field
instrument of Spektr-R made it impossible to study correlation
between high-frequency velocity and magnetic fluctuations and
to compute cross helicities and residual energies.
Cross helicity is defined as s = - ++ - + -E E E Ec ( ) ( )

where E± corresponds to the power spectra of the Elsässer
variables d d m r= z v b 0 where dv and db are the
fluctuations of the velocity and magnetic fields in Alfvén
units, respectively, and ρ is the mean mass density of protons
(Chen et al. 2013a; Wicks et al. 2013). Cross helicity is
normalized in such a way that it is 1 and −1 for anti-sunward
and sunward propagating waves, respectively. Cross helicity is
conserved in the absence of dissipation and corresponds to the
linkages between lines of vorticity and magnetic field lines,
both of which are frozen to the fluid flow in the absence of
dissipation (Chandran 2008). In addition to the numerous
statistical studies at 1 au (e.g., Chen et al. 2013a; Wicks et al.
2013), the radial dependence of σc was investigated on
magnetohydrodynamic (MHD) scales with Helios data
(Roberts et al. 1987; Grappin et al. 1990; Bruno &
Bavassano 1991, 1993; Bruno et al. 1997). These studies
found that σc decreases as the solar wind propagates away from
the Sun; however, the physical mechanisms responsible for this
feature are debated. For example, Bruno & Bavassano
(1991, 1993) suggested that the decrease of σc is driven by
the interaction of Alfvénic fluctuations with static structures or
magnetosonic perturbations, which results in a decrease of the
+z component rather than an increase of -z . Several other
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studies suggested that shear and expansion causes the decrease
of σc with increasing radial distances (e.g., Roberts et al. 1987;
Oughton & Matthaeus 1995).

Residual energy is the difference between the kinetic and
magnetic energy and is defined as s = - +E E E Er

v b v b( ) ( ).
Unlike for pure Alfvén waves (Alfvén 1942) where the energy
of velocity and magnetic fluctuations are in equipartition, in the
solar wind, the magnetic energy is typically larger than the
energy of velocity fluctuations (Chen et al. 2013a; Wicks et al.
2013). The origin of this difference is a matter of considerable
debate; potential explanations include the role of magnetic
structures with the solar origin and local generation of residual
energy by counterpropagating Alfvén wave packets (Wang
et al. 2011; Boldyrev et al. 2012; Bowen et al. 2018).

Understanding the scaling of σr and σc in the kinetic-scale
solar wind fluctuations is fundamentally important for describ-
ing heating and dissipation in the solar wind, solar corona, and
plasma systems more generally. Previous turbulence models
(e.g., Boldyrev 2006; Matthaeus et al. 2008) described the
coupling between velocity and magnetic field fluctuations in
the inertial range; however, the main assumptions underlying
these models are violated at the kinetic scales where the MHD
approximation breaks down and the quadratic integral
invariants are no longer retained (Matthaeus & Goldstein 1982).
To the best of our knowledge, no theory exists that describes
the correlation between velocity and magnetic fluctuations in
the kinetic range. The first attempt to measure σc and σr in the
kinetic range was presented by Parashar et al. (2018) using
Magnetospheric Multiscale Mission data. They found that σr
and σc converge to 1 and 0, respectively, from the inertial range
to the smallest observable scales (20–40 km). The loss of
alignment between dv and db (quantified by the metric

q s s= - »cos 1 0c r
2( ) ( ) ) was explained by the demagne-

tization of protons.
The Faraday Cup (SPC) instrument (Kasper et al. 2016; Case

et al. 2020) on board NASA’s Parker Solar Probe (PSP; Fox
et al. 2016) is equipped with a novel flux angle (FA) operation
mode that allows rapid measurements of the phase space
density fluctuations with an unprecedented 293 Hz cadence,
providing a new tool to understand kinetic-scale turbulence in
the solar wind and solar corona. SPC was operated in FA mode
twice for a total of ∼110 s during the first perihelion of the PSP
on 2018 November 4 and captured the fine structure of a
magnetic switchback. Magnetic switchbacks are one of the
most prominent features of the solar wind in the inner
heliosphere; they are characterized by short, large-amplitude
velocity enhancements that are accompanied with a 90°–180°
rotation of the magnetic field (Gosling et al. 2011; Horbury
et al. 2018; Dudok de Wit et al. 2020). These structures might
be direct signatures of impulsive chromospheric or coronal
energy release (Horbury et al. 2018; Bale et al. 2019).

In this work, we present the first results from the FA
operation mode of SPC and study σc and σr in the kinetic range
of the turbulent cascade. Our study complements the ones by
McManus et al. (2020), Chen et al. (2020), and Parashar et al.
(2020), which focus on magnetic and velocity fluctuations on
MHD scales in the inner heliosphere. In Section 2, we describe
the conversion of phase space fluctuations into vector velocity
fluctuations, with particular emphasis on the underlying
assumptions and limitations of the data product. In Section 3,
we discuss the properties of kinetic-scale turbulence in the
observed magnetic switchback, such as a spectral index of the

power spectrum, residual energy, and cross helicity. Finally,
Section 4 contains a summary and a discussion of the results.

2. Method

The Faraday Cup instrument of the PSP measures fluxes and
flow angles as a function of energy from 50 eV/q to 8 keV/q
for ions (Kasper et al. 2016; Case et al. 2020) based on the
currents detected by four collector plates. In typical operation
mode, SPC scans through 128 energy per charge windows in
0.87 s (1.14 Hz); higher-cadence data products (∼5–19.6 Hz)
are available for shorter intervals as well. In FA mode SPC
measures a single energy/charge window near the center of the
proton velocity distribution function (VDF) with 293 Hz
cadence.
Figure 1 shows an overview of the components of the

magnetic field (293 Hz cadence based on fluxgate magnet-
ometer data; Bale et al. 2016) and velocity for a 3 hr period
starting on 2018 November 4 14:00:00 UT when the PSP was
approximately at 0.174 au distance from the Sun. The vector
components are in the Radial Tangential Normal (RTN)
coordinate system where R points radially outward from the
Sun, N is along the ecliptic north, and T completes the right-
hand coordinate system. A magnetic switchback was observed
from 15:24:01 to 15:43:07 and was accompanied with a sudden
reversal of the radial magnetic field component and enhanced
(toward the positive T direction) tangential velocity component.
The duration of the studied magnetic switchback (e.g., interval
with BR>0 nT) is approximately 19 minutes, which is
considered to be an above average structure (see Kasper
et al. 2019). In Figure 1, the shaded region marks the two
intervals where SPC was operated in FA mode between
15:31:54–15:32:53 and 15:33:30–15:34:22 UT.
Figure 2 shows 15 s averages of proton VDFs before each

FA mode interval where the x-axis is the phase speed and the y-
axis is the phase space density (P) in arbitrary units (for the
conversion of the axes, see Case et al. 2020). The FA mode
achieves unprecedented temporal resolution by scanning
a single window in phase space near the peak of the VDF,
which are marked with blue (446–457 km s−1) and red
(426–437 km s−1) for the first and second FA mode intervals,
respectively. Significant changes in the solar wind parameters
shift the VDF, hence the blue and red regions do not align with
the peak, which makes the interpretation of the FA mode
measurements more complicated. To ensure that the FA mode
interval is not affected by those large changes, we studied
the variability of the solar wind parameters and compared 15 s
averages of the solar wind speed (Vsw), the core proton density
(np), the core thermal velocity (Vth), the ratio of thermal to
magnetic pressure (βp), and Alfvén speed (VA), which are
summarized in Table 1. The solar wind parameters were very
steady during the studied periods and none of them show
variations of more than 5% suggesting that SPC measured
approximately the same part of the VDF throughout in the FA
mode intervals. We note that the proton core temperature
anisotropy (T̂ T∣∣ estimated with 10 s cadence; for details, see
Huang et al. 2019) was in the range of 0.96–1.07 for both
intervals.
The goal of the subsequent analysis is to define a fitting

procedure converting the FA mode data into vector velocity
components and to estimate the potential noise contribution
from np and Vth fluctuations. Our approach is the following: full
proton VDFs from 15:30:54 to 15:35:22 UT (starting 60 s
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before the first and ending 60 s after the second FA mode
interval) were selected where plasma moments (including Vsw,
np and Vth) were available. Three linear fits were used to
estimate the scaling of P with Vsw, np and Vth. For the fitting,
the phase space densities in the 445–457 and 426–437 km s−1

windows were normalized by their mean values based on the
entire interval ( = á ñP P P˜ ). The slopes (L1,2) and intercepts
(M1,2) of the fits are summarized in Table 2. We note that in the
studied interval P varies over a relatively small range, and thus
higher order fits lead to no meaningful improvement in the
goodness of these fits.

The vector velocity components in the RTN frame were
obtained as

f q= + -V L P M Vcos cos

1
R V V R1,2sw1,2 sw1,2 S C[ ( ) · ( ) · (( · ˜ ) )]

( )

f q= + -V L P M Vcos sin 2T V V T1,2sw1,2 sw1,2 S C[ ( ) · ( ) · (( · ˜ ) )] ( )

f= + -V L P M Vsin 3N V V N1,2sw1,2 sw1,2 S C[ ( ) · (( · ˜ ) )] ( )

f
p
l=

+ - +
+ + +

C D A B

A B C D

2

180
4

( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥

Figure 1. Overview of the magnetic and velocity components in a 3 hr interval centered at the FA mode data.
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q
p
l=

+ - +
+ + +

A D B C

A B C D

2

180
. 5

( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥

Equations (4) and (5) are linear approximations of the flow
angles where the constant l p= »r d2 1.009LA LA*( ) ( ) is
determined by the radius of the limiting aperture, rLA=10.86
mm, and its axial distance from the collector plates,
dLA=16.9 mm. The denominator of Equations (4) and (5)
corresponds to the sum of currents measured by the four
collector plates (A, B, C, and D) of SPC. As viewed from the
Sun during encounter, A and B collector plates are on the
“ecliptic south,” while C and D are on the “ecliptic north.”
Equation (4) thus measures the elevation angle of the flow
from the R–T plane toward the N+ direction. Similarly, the
numerator of Equation (5) corresponds to currents in the
“east–west” direction and thus θ is the azimuth angle of
the flow, which is measured in the R–T plane from the R+
direction toward T+ direction (for details of the operation
of SPC see Case et al. 2020). In Equations (1)–(3), P1,2˜ is
the normalized phase space density in the 445–457 and

426–437 km s−1 windows, ViSC is the ith component of the
spacecraft velocity in the RTN frame ( =V 18.17RSC km s−1,

= -V 90.7TSC km s−1, and = -V 4.1NSC km s−1 during both
intervals).
Figure 3 compares the directly measured (based on 19.6 Hz

moments) and estimated (using Equations (1)–(5)) RTN
velocity components for the 445–457 km s−1 (a)–(c) and
426–437 km s−1 (d)–(f) phase space density fluctuations,
respectively. The corresponding R-squared values and 1σ
errors are shown in each panel; the red line is x=y. Figure 4
has the same format as Figure 3 and shows the measured and
estimated np and Vth values. For the 445–457 km s−1 phase
speed (Figures 4(a)–(c)), the predicted RTN velocity compo-
nents are in excellent agreement with the high-cadence
moments. Figures 4(a)–(b) shows that the predictive power of
P is somewhat lower for Vth and np, resulting in lower R-
squared values. For the lower phase speed range (Figures 4(d)–
(f)), we found some scattering in the VR component, while the T
and N velocity components are in good agreement with the
measured values. In Figures 4(c)–(d), Vth and np are predicted
with larger errors than in Figures 4(a)–(b) and the fits have the
lowest R-squared.
We use our fitting technique to estimate the vector velocity

fluctuations in the FA mode and compare their spectral
properties to the velocity moments derived based on full
VDFs. We selected 190 s of data between 15:28:44–15:31:54
and 15:34:33–15:37:32 (e.g., measurements right before and
after the first and second FA mode intervals, respectively)
when SPC measured full VDFs with 19.6 Hz cadence. The
length of this interval was chosen such that it is long enough to

Figure 2. 15 s averages of full VDFs before each FA mode interval, respectively. The shaded areas mark the range in phase speed, which are measured in the
FA mode.

Table 1
15 s Averages and Standard Deviations of Solar Wind Parameters before and after Each FA Mode Interval

Parameter Before #1 After #1 Before #2 After #2

Vsw (km s−1) 423.5±5.3 415.9±12.1 406.7±4.1 421±4.2
np (cm

−3) 231.5±16.9 230.1±19.4 241.3±9.8 231.7±16.7
Vth (km s−1) 78.0±5.7 82.7±5.9 85.9±3.4 81.7±5.7
βp 0.6±0.17 0.63±0.16 0.71±0.08 0.77±0.2
VA (km s−1) 102.1±5.1 104.7±4.6 102.3±2.2 96.9±3.5

Table 2
Fitting Parameters for the 445–457 km s−1 (L1 and M1) and 426–437 km s−1

(L2 and M2) Phase Space Density Fluctuations, Respectively

Response Variable L1 L2 M1 M2

Vsw 111.19 87.677 320.16 337.67
Vth −43.973 −48.672 126.76 131.46
np −76.941 −46.356 311.69 281.1
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cover the inertial range of the fluctuations, but also all data
points are within the magnetic switchback. The trace power
spectrum of the velocity fluctuations was computed for the
19.6 Hz data in the magnetic switchback and compared to
the spectrum of fluctuations derived from the FA mode data.
The results in Figure 5 suggest that the two data sets have
remarkably good agreement for low frequencies (below 1 Hz)
for both the first (a) and second (b) FA mode intervals. We note
that in the case of the 19.6 Hz data switching between
neighboring energy/charge windows during the scans may

introduce some noise, which results in a higher noise floor
compared to the FA mode data.
Figure 4 indicates that the P fluctuations are correlated with

Vth and np as well, which may introduce noise in the velocity
power spectra in Figure 5. To quantify this effect, we used the
first FA mode interval and calculated the RTN velocity
components, Vth and np. Each parameter was normalized to
its median value (e.g., each velocity component separately) and
then the power spectra were computed. In Figure 6, it can be
seen that the wave power of the trace velocity fluctuations is

Figure 3. Comparison of the measured (based on 19.6 Hz moments) and estimated (Equations (1)–(5)) RTN velocity components for the 445–457 km s−1 (a)–(c) and
426–437 km s−1 (d)–(f) phase space density fluctuations, respectively.
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three orders of magnitude larger than the wave power of np and
Vth. This significant difference is explained by the fact that the
flow angle shows rapid and large-amplitude fluctuations (as
expected for a highly Alfvénic flow), while np and Vth change
much more slowly. Based on these results, we suggest that the
velocity spectra has negligible noise contribution from changes
in np and Vth.

3. Spectral Features of Kinetic-scale Turbulence

Figures 7(a) and (b) show the power spectrum of the trace
velocity and magnetic fluctuations. The magnetic field fluctua-
tions were converted into Alfvén units normalizing by
m r0

1 2( ) . The vertical lines mark the scale of the convected
ion inertial length ( pV d2 isw ) and proton gyoradius ( prV 2 isw )
where w=d ci p and r = ^mv qBi . The black and green dots
show the V- and B-field spectral indices based on a fitting
window, which has a size of a factor of 3.7; the dots are placed
at the center of each fitting window.

In the inertial range (0.1–1 Hz), the spectral indices of the
velocity and magnetic fluctuations are −1.51/−1.61 and
−1.60/−1.74 for the first and second intervals, respectively.
These values are close to the observations at 1 au where
magnetic field spectrum is typically steeper than the velocity
(Boldyrev et al. 2011; Chen et al. 2013a; Bowen et al. 2018).
The ion-scale spectral break of the magnetic field power
spectrum is approximately 5 and 2 Hz in the first and second
intervals, respectively, which are at least a factor of six larger
than the typical values at 1 au (≈0.3 Hz; e.g., Markovskii et al.
2008; Vech et al. 2017). This suggests again that the FA mode
is essential to study the d dv b– coupling in the kinetic range
since velocity fluctuations at these scales are not measured with
other operation modes of SPC.

The V- and B-field spectral indices show good correlation in
the inertial range; at kinetic scales the B-field spectral index is
around −2.5 and −3, which is similar to the observations at

1 au (e.g., Leamon et al. 1998; Alexandrova et al. 2009), in
contrast at kinetic scales we find no signatures of spectral
steepening in the V-field power spectrum. Previous studies
found that the power spectrum of ion fluxes show very wide
range of features: Riazantseva et al. (2017) categorized power
spectra of ion fluxes into five groups using Spektr-R data at
1 au. The most frequently occurring spectra (50% of the cases)
showed two slopes and one break point between them at ion-
scale, the second most frequent class (32%) showed flattening
in the vicinity of the break. In contrast, 6.3% of power spectras
did not show steepening at kinetic scales at all. Riazantseva
et al. (2017) did not find clear trend (such as Vsw or βp
dependence) in the underlying solar wind parameters that may
explain this feature. Based on previous studies (e.g., Chen &
Boldyrev 2017), we expect the steepening of the velocity
spectra and it is possible that the noise floor of the FA mode
data is not low enough to measure such a break scale.
Figure 8 shows the normalized cross helicity, residual energy

and cosine of the alignment angle. In Figure 8(a), the normalized
cross helicity shows some fluctuations in the inertial range
(s » 0.4c ), which is followed by a sudden decrease near the ion-
scale spectral break and convergence to 0 at kinetic scales. In
Figure 8(b), the magnetic energy is larger than the energy of
velocity fluctuations in the inertial range and σr increases
gradually toward kinetic scales. Finally, Figure 8(c) suggests that
the magnetic and velocity fluctuations are aligned in the inertial
range and q s s= - =cos 1 0.5c r

2( ) ( ) ; however, this align-
ment drops at approximately 1.4 Hz (≈3.1di), which is compar-
able to the values found by Parashar et al. (2018) in the solar wind
(4.4di) at 1 au and in the terrestrial magnetosheath (6.5di).
Disruption of current sheets with the size of a few di may affect
the turbulent cascade and lead to the lack of alignment between dv
and db (see Loureiro & Boldyrev 2017; Mallet et al. 2017; Vech
et al. 2018). Another explanation for the loss of alignment is that
the turbulence transitions into the kinetic Alfvén range where the

Figure 4. Comparison of the measured (based on 19.6 Hz moments) and estimated np and Vth for the 445–457 km s−1 (a)–(b) and 426–437 km s−1 (c)–(d) phase space
density fluctuations, respectively.
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Figure 5. Comparison of the trace power spectrum of velocity fluctuations for the 19.6 Hz cadence data when full VDFs were measured and the FA mode data in
intervals #1 and #2. For frequencies below 1 Hz, the FA mode data shows remarkably good agreement with the 19.6 Hz data for both intervals.

Figure 6. Comparison of the power spectrum of the normalized Vth, np, and trace velocity fluctuations during the first FA mode interval.
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polarization of the fluctuations changes and the alignment
between db and dv ceases to exist (e.g., Schekochihin et al. 2009).

The sudden decrease of the cosine of the alignment angle in
Figure 8(c) is close to the flattening of the proton velocity
spectra hence we used the following test to quantify the effect
of noise. An artificial test velocity data Vtest( ) was computed by
adding Gaussian noise to the magnetic field measurements. The
amplitude of the noise was empirically chosen such that the
trace power spectra of Vtest is in good agreement with the real
one in Figure 7. We calculated cos(θ) using Vtest and compared
it to the real measurements. We found that in the artificial test
data, the alignment drops to zero at a factor of three times a
higher frequency than the real measurements; therefore, we
suggest that the observed changes of cos(θ) near the break scale
are primarily physical and are not caused by Gaussian noise.

4. Conclusion

In this work, we presented the first results from the FA
operation mode of the Faraday Cup instrument on board the
PSP. This operation mode allows rapid (up to 293 Hz)
measurements of phase space density fluctuations close to the
peak of the proton VDF. We described an approach to convert

the measured phase space density fluctuations into vector
velocity components, which were found to be reliable up to
7 Hz, which was above the ion-scale spectral break of the
magnetic spectrum.
In the inertial range, the velocity and magnetic power

spectras were similar to the observations at 1 au; at kinetic
scales, the magnetic power spectra steepened (spectral index
was −2.5/−3), while the velocity power spectra showed no
clear break, which is rarely observed at 1 au. The scaling of σc
and σr in the inertial range was similar to larger statistical
studies at 1 au (Podesta et al. 2009; Parashar et al. 2018;
Verdini et al. 2018). Signatures of alignment between velocity
and magnetic fluctuations was found in the inertial range;
however, near the ion-scale spectral break (at the scale of
3.4di), we found loss of alignment between velocity and
magnetic fluctuations, which might be due to demagnetization
of protons.
We expect that with a decreasing perihelion distance, the

SPC S/N will improve nearly one order of magnitude and the
FA mode will be used several times each day during encounter,
allowing us to prepare a statistical study and to investigate
proton velocity fluctuations beyond ion–kinetic scales.

Figure 7. Power spectra of velocity and magnetic field fluctuations during the first (a) and second (b) FA mode intervals, respectively.

8

The Astrophysical Journal Supplement Series, 246:52 (10pp), 2020 February Vech et al.



The authors are grateful for the reviewer’s constructive
comments, which significantly helped to improve the manuscript.
The SWEAP Investigation and this publication are supported
by the PSP mission under NASA contract NNN06AA01C.
The FIELDS experiment on the PSP spacecraft was designed
and developed under NASA contract NNN06AA01C. D.V. was
supported by NASA’s Future Investigators in NASA Earth and

Space Science and Technology Program Grant 80NSSC19K1430.
S.D.B. acknowledges the support of the Leverhulme Trust Visiting
Professorship program. Contributions from S.T.B. were supported
by NASA Headquarters under the NASA Earth and Space
Science Fellowship Program Grant 80NSSC18K1201. K.G.K. was
supported by NASA grant NNX16AM23G. J.C.K. was supported
by NASA Grant NNX14AR78G. C.H.K.C. is supported by STFC

Figure 8. Normalized cross helicity, residual energy and cosine of the alignment angle for the first and second FA mode intervals, respectively

9

The Astrophysical Journal Supplement Series, 246:52 (10pp), 2020 February Vech et al.



Ernest Rutherford Fellowship ST/N003748/2. The data used in
this study are available from 2019 November 12 at the NASA
Space Physics Data Facility (SPDF).

ORCID iDs

Daniel Vech https://orcid.org/0000-0003-1542-1302
Justin C. Kasper https://orcid.org/0000-0002-7077-930X
Kristopher G. Klein https://orcid.org/0000-0001-6038-1923
Jia Huang https://orcid.org/0000-0002-9954-4707
Michael L. Stevens https://orcid.org/0000-0002-7728-0085
Christopher H. K. Chen https://orcid.org/0000-0003-
4529-3620
Anthony W. Case https://orcid.org/0000-0002-3520-4041
Kelly Korreck https://orcid.org/0000-0001-6095-2490
Stuart D. Bale https://orcid.org/0000-0002-1989-3596
Trevor A. Bowen https://orcid.org/0000-0002-4625-3332
David Malaspina https://orcid.org/0000-0003-1191-1558
Marc Pulupa https://orcid.org/0000-0002-1573-7457
Thierry Dudok de Wit https://orcid.org/0000-0002-
4401-0943
Robert MacDowall https://orcid.org/0000-0003-3112-4201

References

Alexandrova, O., Saur, J., Lacombe, C., et al. 2009, PhRvL, 103, 165003
Alfvén, H. 1942, Natur, 150, 405
Bale, S., Goetz, K., Harvey, P., et al. 2016, SSRv, 204, 49
Bale, S., Kellogg, P., Mozer, F., Horbury, T., & Reme, H. 2005, PhRvL, 94,

215002
Bale, S. D., Badman, S. T., & Bonnell, J. W. 2019, Natur, 576, 237
Boldyrev, S. 2006, PhRvL, 96, 115002
Boldyrev, S., Perez, J. C., Borovsky, J. E., & Podesta, J. J. 2011, ApJL,

741, L19
Boldyrev, S., Perez, J. C., & Zhdankin, V. 2012, in AIP Conf. Proc. 1436,

Physics of the Heliosphere: A 10 Year Retrospective, ed. J. Heerikhuisen
et al. (Melville, NY: AIP), 18

Bowen, T. A., Mallet, A., Bonnell, J. W., & Bale, S. D. 2018, ApJ, 865, 45
Bruno, R., & Bavassano, B. 1991, JGRA, 96, 7841
Bruno, R., & Bavassano, B. 1993, P&SS, 41, 677
Bruno, R., Bavassano, B., Pietropaolo, E., Carbone, V., & Rosenbauer, H.

1997, JGRA, 102, 14687
Case, A. W., Kasper, J. C., Stevens, M. L., et al. 2020, doi:10.3847/1538-

4365/ab5a7b
Chandran, B. D. 2008, ApJ, 685, 646

Chen, C., Bale, S., Salem, C., & Maruca, B. 2013a, ApJ, 770, 125
Chen, C., Boldyrev, S., Xia, Q., & Perez, J. 2013b, PhRvL, 110, 225002
Chen, C. H., & Boldyrev, S. 2017, ApJ, 842, 122
Chen, C. H. K., Bale, S. D., Bonnell, J. W., et al. 2020, doi:10.3847/1538-

4365/ab60a3
Coleman, P. J., Jr 1968, ApJ, 153, 371
Dudok de Wit, T., Krasnoselskikh, V. V., Bale, S. D., et al. 2020, doi:10.3847/

1538-4365/ab5853
Fox, N., Velli, M., Bale, S., et al. 2016, SSRv, 204, 7
Gosling, J., Tian, H., & Phan, T. 2011, ApJL, 737, L35
Grappin, R., Mangeney, A., & Marsch, E. 1990, JGRA, 95, 8197
Horbury, T., Matteini, L., & Stansby, D. 2018, MNRAS, 478, 1980
Huang, J., Kasper, J. C., Vech, D., et al. 2019, arXiv:1912.03871
Kasper, J. C., Abiad, R., Austin, G., et al. 2016, SSRv, 204, 131
Kasper, J. C., Bale, S. D., & Belcher, J. W. 2019, Natur, 576, 228
Leamon, R. J., Smith, C. W., Ness, N. F., Matthaeus, W. H., & Wong, H. K.

1998, JGRA, 103, 4775
Loureiro, N. F., & Boldyrev, S. 2017, ApJ, 850, 182
Mallet, A., Schekochihin, A. A., & Chandran, B. D. 2017, JPlPh, 83,

905830609
Markovskii, S., Vasquez, B. J., & Smith, C. W. 2008, ApJ, 675, 1576
Matteini, L., Alexandrova, O., Chen, C., & Lacombe, C. 2016, MNRAS,

466, 945
Matthaeus, W., Pouquet, A., Mininni, P. D., Dmitruk, P., & Breech, B. 2008,

PhRvL, 100, 085003
Matthaeus, W. H., & Goldstein, M. L. 1982, JGRA, 87, 6011
McManus, M. D., Bowen, T. A., Mallet, A., et al. 2020, ApJS, doi:10.3847/

1538-4365/ab6dce
Oughton, S., & Matthaeus, W. H. 1995, JGRA, 100, 14783
Parashar, T. N., Chasapis, A., Bandyopadhyay, R., et al. 2018, PhRvL, 121,

265101
Parashar, T. N., Goldstein, M. L., Maruca, B. A., et al. 2020, doi:10.3847/

1538-4365/ab64e6
Podesta, J., Roberts, D., & Goldstein, M. 2007, ApJ, 664, 543
Podesta, J. J., Chandran, B. D. G., Bhattacharjee, A., Roberts, D. A., &

Goldstein, M. L. 2009, JGRA, 114, A01107
Riazantseva, M., Budaev, V., Rakhmanova, L., et al. 2017, JPlPh, 83,

705830401
Roberts, D., Goldstein, M., Klein, L., & Matthaeus, W. 1987, JGRA, 92, 12023
Šafránková, J., Němeček, Z., Němec, F., et al. 2016, ApJ, 825, 121
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