25 research outputs found

    Science of entropy-stabilized ultra-high temperature thin films: Synthesis, validation and properties

    Get PDF
    The authors report on using multi-cathode magnetron sputtering to fabricate 5-component refractory carbides that are stabilized by configurational entropy to form a robust and high-temperature class of high temperature materials. Magnetron sputtering is an appealing fabrication method as one can prepare layers with high density and the compositional flexibility afforded by five independent metallic sources. Thin layers that comprise mixed carbides of the following elements: W, Mo, Ti, Hf, Zr, Ta, V, and Nb, will be discussed. In all cases sputtering is performed reactively in a gas atmosphere including Ar as the inert sputter gas and propane as the carbon source. Sputter depositions can be conducted between room temperature and 800 °C. The relationship between sputtering parameters including power, pressure, rate, gas mixture, and film properties including density, thermal conductivity, lattice constant, and phase evolution will be discussed. Please click Additional Files below to see the full abstract

    Science of high entropy ultra-high temperature thin films: synthesis and characterization

    Get PDF
    The authors describe the use of a 5-cathode reactive RF magnetron sputtering system to fabricate up to 5-component refractory high entropy carbides which form a robust class of high temperature materials. Magnetron sputtering is an appealing fabrication method it allows for deposition of high density films of many compositions at relatively low temperatures compared to bulk processing techniques. Thin films of mixed carbides consisting of the following elements: Ti, Zr, Hf, Nb, Ta, Mo, and W, will be discussed. All films are sputtered reactively in a gas atmosphere where Ar is the inert sputter gas with methane as the carbon source. Carbon stoichiometry is controlled via methane flow rates and assessed with density measurements. Use of 5 cathodes allows for rapid exploration of the 5 metal composition space from unary to quaternary or quinary carbides in short time spans. Please click Additional Files below to see the full abstract

    Efficacy of bacterial ribosomal RNA-targeted reverse transcription-quantitative PCR for detecting neonatal sepsis: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neonatal sepsis is difficult to diagnose and pathogens cannot be detected from blood cultures in many cases. Development of a rapid and accurate method for detecting pathogens is thus essential. The main purpose of this study was to identify etiological agents in clinically diagnosed neonatal sepsis using bacterial ribosomal RNA-targeted reverse transcription-quantitative PCR (BrRNA-RT-qPCR) and to conduct comparisons with the results of conventional blood culture. Since BrRNA-RT-qPCR targets bacterial ribosomal RNA, detection rates using this approach may exceed those using conventional PCR.</p> <p>Methods</p> <p>Subjects comprised 36 patients with 39 episodes of suspected neonatal sepsis who underwent BrRNA-RT-qPCR and conventional blood culture to diagnose sepsis. Blood samples were collected aseptically for BrRNA-RT-qPCR and blood culture at the time of initial sepsis evaluation by arterial puncture. BrRNA-RT-qPCR and blood culture were undertaken using identical blood samples, and BrRNA-RT-qPCR was performed using 12 primer sets.</p> <p>Results</p> <p>Positive rate was significantly higher for BrRNA-RT-qPCR (15/39, 38.5%) than for blood culture (6/39, 15.4%; p = 0.0039). BrRNA-RT-qPCR was able to identify all pathogens detected by blood culture. Furthermore, this method detected pathogens from neonates with clinical sepsis in whom pathogens was not detected by culture methods.</p> <p>Conclusions</p> <p>This RT-PCR technique is useful for sensitive detection of pathogens causing neonatal sepsis, even in cases with negative results by blood culture.</p

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
    corecore