192 research outputs found

    How are hydrogen peroxide messages relayed to affect cell signaling?

    Get PDF
    H2O2 signals trigger adaptive responses affecting cell division, differentiation, migration and survival. These signals are transduced by selective oxidation of cysteines on specific target proteins, with redox-sensitive cysteines now identified in many proteins, including both kinases and phosphatases. Assessing the contribution of these oxidation events to cell signaling, presents several challenges, including understanding how and when the selective oxidation of specific proteins takes place in vivo. In recent years, a combination of biochemical, structural, genetic and computational approaches in fungi, plants and animals have revealed different ways in which thiol peroxidases(peroxiredoxins) are bypassed or utilized in relaying these signals. Together these mechanisms provide a conceptual framework for selectively oxidizing signaling proteins that will further advance understanding of how redox modifications contribute to health and disease

    Quantifying redox transcription factor dynamics as a tool to investigate redox signalling

    Get PDF
    \ua9 2024 The Authors. A critical feature of the cellular antioxidant response is the induction of gene expression by redox-sensitive transcription factors. In many cells, activating these transcription factors is a dynamic process involving multiple redox steps, but it is unclear how these dynamics should be measured. Here, we show how the dynamic profile of the Schizosaccharomyces pombe Pap1 transcription factor is quantifiable by three parameters: signal amplitude, signal time and signal duration. In response to increasing hydrogen peroxide concentrations, the Pap1 amplitude decreased while the signal time and duration showed saturable increases. In co-response plots, these parameters showed a complex, non-linear relationship to the mRNA levels of four Pap1-regulated genes. We also demonstrate that hydrogen peroxide and tert-butyl hydroperoxide trigger quantifiably distinct Pap1 activation profiles and transcriptional responses. Based on these findings, we propose that different oxidants and oxidant concentrations modulate the Pap1 dynamic profile, leading to specific transcriptional responses. We further show how the effect of combination and pre-exposure stresses on Pap1 activation dynamics can be quantified using this approach. This method is therefore a valuable addition to the redox signalling toolbox that may illuminate the role of dynamics in determining appropriate responses to oxidative stress

    Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis

    Get PDF
    Cellular homoeostatic pathways such as macroautophagy (hereinafter autophagy) are regulated by basic mechanisms that are conserved throughout the eukaryotic kingdom. However, it remains poorly understood how these mechanisms further evolved in higher organisms. Here we describe a modification in the autophagy pathway in vertebrates, which promotes its activity in response to oxidative stress. We have identified two oxidation-sensitive cysteine residues in a prototypic autophagy receptor SQSTM1/p62, which allow activation of pro-survival autophagy in stress conditions. The Drosophila p62 homologue, Ref(2)P, lacks these oxidation-sensitive cysteine residues and their introduction into the protein increases protein turnover and stress resistance of flies, whereas perturbation of p62 oxidation in humans may result in age-related pathology. We propose that the redox-sensitivity of p62 may have evolved in vertebrates as a mechanism that allows activation of autophagy in response to oxidative stress to maintain cellular homoeostasis and increase cell survival.Peer reviewe

    Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis

    Get PDF
    Cellular homoeostatic pathways such as macroautophagy (hereinafter autophagy) are regulated by basic mechanisms that are conserved throughout the eukaryotic kingdom. However, it remains poorly understood how these mechanisms further evolved in higher organisms. Here we describe a modification in the autophagy pathway in vertebrates, which promotes its activity in response to oxidative stress. We have identified two oxidation-sensitive cysteine residues in a prototypic autophagy receptor SQSTM1/p62, which allow activation of pro-survival autophagy in stress conditions. The Drosophila p62 homologue, Ref(2)P, lacks these oxidation-sensitive cysteine residues and their introduction into the protein increases protein turnover and stress resistance of flies, whereas perturbation of p62 oxidation in humans may result in age-related pathology. We propose that the redox-sensitivity of p62 may have evolved in vertebrates as a mechanism that allows activation of autophagy in response to oxidative stress to maintain cellular homoeostasis and increase cell survival

    Highly Sensitive Determination of Hydrogen Peroxide and Glucose by Fluorescence Correlation Spectroscopy

    Get PDF
    BACKGROUND: Because H(2)O(2) is generated by various oxidase-catalyzed reactions, a highly sensitive determination method of H(2)O(2) is applicable to measurements of low levels of various oxidases and their substrates such as glucose, lactate, glutamate, urate, xanthine, choline, cholesterol and NADPH. We propose herein a new, highly sensitive method for the measurement of H(2)O(2) and glucose using fluorescence correlation spectroscopy (FCS). METHODOLOGY/PRINCIPAL FINDINGS: FCS has the advantage of allowing us to determine the number of fluorescent molecules. FCS measures the fluctuations in fluorescence intensity caused by fluorescent probe movement in a small light cavity with a defined volume generated by confocal illumination. We thus developed a highly sensitive determination system of H(2)O(2) by FCS, where horseradish peroxidase (HRP) catalyzes the formation of a covalent bond between fluorescent molecules and proteins in the presence of H(2)O(2). Our developed system gave a linear calibration curve for H(2)O(2) in the range of 28 to 300 nM with the detection limit of 8 nM. In addition, by coupling with glucose oxidase (GOD)-catalyzed reaction, the method allows to measure glucose in the range of 80 nM to 1.5 Β΅M with detection limit of 24 nM. The method was applicable to the assay of glucose in blood plasma. The mean concentration of glucose in normal human blood plasma was determined to be 4.9 mM. CONCLUSIONS/SIGNIFICANCE: In comparison with commercial available methods, the detection limit and the minimum value of determination for glucose are at least 2 orders of magnitude more sensitive in our system. Such a highly sensitive method leads the fact that only a very small amount of plasma (20 nL) is needed for the determination of glucose concentration in blood plasma

    Towards the understanding of microRNA and environmental factor interactions and their relationships to human diseases

    Get PDF
    Increasing studies have shown that the interactions between microRNAs (miRNAs) and environmental factors (EFs) play critical roles in determining phenotypes and diseases. In this study, we revealed a number of important biological insights by analyzing and modeling of miRNA-EF interactions and their relationships with human diseases. We demonstrated that the miRNA signatures of EFs could provide new information on EFs. More importantly, we quantitatively showed that the miRNA signatures of drug/radiation could be used as indicators for evaluating the results of cancer treatments. Finally, we developed a computational model that could efficiently identify the possible relationship between EF and human diseases. Meanwhile, we provided a website (http://cmbi.hsc.pku.edu.cn/miren) for the main results of this study. This study elucidates the mechanisms of EFs, presents a framework for predicting the results of cancer treatments, and develops a model that illustrates the relationships between EFs and human diseases

    GAMEC – a new intensive protocol for untreated poor prognosis and relapsed or refractory germ cell tumours

    Get PDF
    There is no consensus as to the management of untreated poor prognosis or relapsed/refractory germ cell tumours. We have studied an intensive cisplatin-based regimen that incorporates high-dose methotrexate (HD MTX) and actinomycin-D and etoposide every 14 days (GAMEC). Sixty-two patients were enrolled in a phase 2 study including 27 who were untreated (IGCCCG, poor prognosis) and 35 with progression despite conventional platinum based chemotherapy. The pharmacokinetics of the drugs were correlated with standard outcome measures. Twenty of the untreated patients were progression free following GAMEC and appropriate surgery, as were 18 individuals in the pretreated group. None of the established prognostic factors for therapy for pretreated patients could identify a poor-prognosis group. Five out of nine late relapses to prior chemotherapy were progression free following GAMEC and appropriate surgery. All patients had at least one episode of febrile neutropenia and there were five (8%) treatment-related deaths. PK values were not predictive of efficacy or toxicity, although the dose intensity in the pretreated group of patients, especially of HD MTX, was significantly correlated with progression-free survival (PFS). GAMEC is a novel intensive regimen for this group of patients producing encouraging responses, although with significant toxicity. For those in whom it fails, further therapy is still possible with durable responses being seen

    Mitochondrial Dysfunction Increases Oxidative Stress and Decreases Chronological Life Span in Fission Yeast

    Get PDF
    Background: Oxidative stress is a probable cause of aging and associated diseases. Reactive oxygen species (ROS) originate mainly from endogenous sources, namely the mitochondria. Methodology/Principal Findings: We analyzed the effect of aerobic metabolism on oxidative damage in Schizosaccharomyces pombe by global mapping of those genes that are required for growth on both respiratory-proficient media and hydrogen-peroxide-containing fermentable media. Out of a collection of approximately 2700 haploid yeast deletion mutants, 51 were sensitive to both conditions and 19 of these were related to mitochondrial function. Twelve deletion mutants lacked components of the electron transport chain. The growth defects of these mutants can be alleviated by the addition of antioxidants, which points to intrinsic oxidative stress as the origin of the phenotypes observed. These respiration-deficient mutants display elevated steady-state levels of ROS, probably due to enhanced electron leakage from their defective transport chains, which compromises the viability of chronologically-aged cells. Conclusion/Significance: Individual mitochondrial dysfunctions have often been described as the cause of diseases or aging, and our global characterization emphasizes the primacy of oxidative stress in the etiology of such processes.This work was supported by DirecciΓ³n General de InvestigaciΓ³n of Spain Grant BFU2006-02610, and by the Spanish program Consolider-Ingenio 2010 Grant CSD 2007-0020 to E.H

    Hydrogen Peroxide Probes Directed to Different Cellular Compartments

    Get PDF
    Background: Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings: Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events. Conclusions: We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells

    Ybp2 Associates with the Central Kinetochore of Saccharomyces cerevisiae and Mediates Proper Mitotic Progression

    Get PDF
    The spindle checkpoint ensures the accurate segregation of chromosomes by monitoring the status of kinetochore attachment to microtubules. Simultaneous mutations in one of several kinetochore and cohesion genes and a spindle checkpoint gene cause a synthetic-lethal or synthetic-sick phenotype. A synthetic genetic array (SGA) analysis using a mad2Ξ” query mutant strain of yeast identified YBP2, a gene whose product shares sequence similarity with the product of YBP1, which is required for H2O2-induced oxidation of the transcription factor Yap1. ybp2Ξ” was sensitive to benomyl and accumulated at the mitotic stage of the cell cycle. Ybp2 physically associates with proteins of the COMA complex (Ctf19, Okp1, Mcm21, and Ame1) and 3 components of the Ndc80 complex (Ndc80, Nuf2, and Spc25 but not Spc24) in the central kinetochore and with Cse4 (the centromeric histone and CENP-A homolog). Chromatin-immunoprecipitation analyses revealed that Ybp2 associates specifically with CEN DNA. Furthermore, ybp2Ξ” showed synthetic-sick interactions with mutants of the genes that encode the COMA complex components. Ybp2 seems to be part of a macromolecular kinetochore complex and appears to contribute to the proper associations among the central kinetochore subcomplexes and the kinetochore-specific nucleosome
    • …
    corecore