15,655 research outputs found

    Stanilov-Tsankov-Videv Theory

    Get PDF
    We survey some recent results concerning Stanilov-Tsankov-Videv theory, conformal Osserman geometry, and Walker geometry which relate algebraic properties of the curvature operator to the underlying geometry of the manifold.Comment: This is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Time scale competition leading to fragmentation and recombination transitions in the coevolution of network and states

    Get PDF
    We study the co-evolution of network structure and node states in a model of multiple state interacting agents. The system displays two transitions, network recombination and fragmentation, governed by time scales that emerge from the dynamics. The recombination transition separates a frozen configuration, composed by disconnected network components whose agents share the same state, from an active configuration, with a fraction of links that are continuously being rewired. The nature of this transition is explained analytically as the maximum of a characteristic time. The fragmentation transition, that appears between two absorbing frozen phases, is an anomalous order-disorder transition, governed by a crossover between the time scales that control the structure and state dynamics.Comment: 5 pages, 5 figures, figures 2 and 4 changed, tile changed, to be published in PR

    Divergent Time Scale in Axelrod Model Dynamics

    Get PDF
    We study the evolution of the Axelrod model for cultural diversity. We consider a simple version of the model in which each individual is characterized by two features, each of which can assume q possibilities. Within a mean-field description, we find a transition at a critical value q_c between an active state of diversity and a frozen state. For q just below q_c, the density of active links between interaction partners is non-monotonic in time and the asymptotic approach to the steady state is controlled by a time scale that diverges as (q-q_c)^{-1/2}.Comment: 4 pages, 5 figures, 2-column revtex4 forma

    Formation and Collapse of Quiescent Cloud Cores Induced by Dynamic Compressions

    Full text link
    (Abridged) We present numerical hydrodynamical simulations of the formation, evolution and gravitational collapse of isothermal molecular cloud cores. A compressive wave is set up in a constant sub-Jeans density distribution of radius r = 1 pc. As the wave travels through the simulation grid, a shock-bounded spherical shell is formed. The inner shock of this shell reaches and bounces off the center, leaving behind a central core with an initially almost uniform density distribution, surrounded by an envelope consisting of the material in the shock-bounded shell, with a power-law density profile that at late times approaches a logarithmic slope of -2 even in non-collapsing cases. The resulting density structure resembles a quiescent core of radius < 0.1 pc, with a Bonnor-Ebert-like (BE-like) profile, although it has significant dynamical differences: it is initially non-self-gravitating and confined by the ram pressure of the infalling material, and consequently, growing continuously in mass and size. With the appropriate parameters, the core mass eventually reaches an effective Jeans mass, at which time the core begins to collapse. Thus, there is necessarily a time delay between the appearance of the core and the onset of its collapse, but this is not due to the dissipation of its internal turbulence as it is often believed. These results suggest that pre-stellar cores may approximate Bonnor-Ebert structures which are however of variable mass and may or may not experience gravitational collapse, in qualitative agreement with the large observed frequency of cores with BE-like profiles.Comment: Accepted for publication in ApJ. Associated mpeg files can be found in http://www.astrosmo.unam.mx/~g.gomez/publica.htm

    Modeling two-language competition dynamics

    Get PDF
    During the last decade, much attention has been paid to language competition in the complex systems community, that is, how the fractions of speakers of several competing languages evolve in time. In this paper we review recent advances in this direction and focus on three aspects. First we consider the shift from two-state models to three state models that include the possibility of bilingual individuals. The understanding of the role played by bilingualism is essential in sociolinguistics. In particular, the question addressed is whether bilingualism facilitates the coexistence of languages. Second, we will analyze the effect of social interaction networks and physical barriers. Finally, we will show how to analyze the issue of bilingualism from a game theoretical perspective.Comment: 15 pages, 5 figures; published in the Special Issue of Advances in Complex Systems "Language Dynamics
    corecore