22,657 research outputs found

    BPS Skyrme neutron stars in generalized gravity

    Get PDF
    We study the coupling of nuclear matter described by the BPS Skyrme model to generalized gravity. Concretely, we consider the Starobinsky model which provides the leading-order correction to the Einstein-Hilbert action. Static solutions describing neutron stars are found both for the full field theory and for the mean-field approximation. We always consider the full Starobinsky model in the nonperturbative approach, using appropriately generalized shooting methods for the numerical neutron star calculations. Many of our results are similar to previous investigations of neutron stars for the Starobinsky model using other models of nuclear matter, but there are some surprizing discrepancies. The "Newtonian mass" relevant for the surface redshift, e.g., results larger than the ADM mass in our model, in contrast to other investigations. This difference is related to the particularly high stiffness of nuclear matter described by the BPS Skyrme model and offers an interesting possibility to distinguish different models of nuclear matter within generalized gravity.Comment: LaTex, 28 pages, 13 figures; v2: minor change

    Dynamical phase coexistence: A simple solution to the "savanna problem"

    Get PDF
    We introduce the concept of 'dynamical phase coexistence' to provide a simple solution for a long-standing problem in theoretical ecology, the so-called "savanna problem". The challenge is to understand why in savanna ecosystems trees and grasses coexist in a robust way with large spatio-temporal variability. We propose a simple model, a variant of the Contact Process (CP), which includes two key extra features: varying external (environmental/rainfall) conditions and tree age. The system fluctuates locally between a woodland and a grassland phase, corresponding to the active and absorbing phases of the underlying pure contact process. This leads to a highly variable stable phase characterized by patches of the woodland and grassland phases coexisting dynamically. We show that the mean time to tree extinction under this model increases as a power-law of system size and can be of the order of 10,000,000 years in even moderately sized savannas. Finally, we demonstrate that while local interactions among trees may influence tree spatial distribution and the order of the transition between woodland and grassland phases, they do not affect dynamical coexistence. We expect dynamical coexistence to be relevant in other contexts in physics, biology or the social sciences.Comment: 8 pages, 7 figures. Accepted for publication in Journal of Theoretical Biolog

    Time scale competition leading to fragmentation and recombination transitions in the coevolution of network and states

    Get PDF
    We study the co-evolution of network structure and node states in a model of multiple state interacting agents. The system displays two transitions, network recombination and fragmentation, governed by time scales that emerge from the dynamics. The recombination transition separates a frozen configuration, composed by disconnected network components whose agents share the same state, from an active configuration, with a fraction of links that are continuously being rewired. The nature of this transition is explained analytically as the maximum of a characteristic time. The fragmentation transition, that appears between two absorbing frozen phases, is an anomalous order-disorder transition, governed by a crossover between the time scales that control the structure and state dynamics.Comment: 5 pages, 5 figures, figures 2 and 4 changed, tile changed, to be published in PR

    Analytical Solution of the Voter Model on Disordered Networks

    Get PDF
    We present a mathematical description of the voter model dynamics on heterogeneous networks. When the average degree of the graph is μ≤2\mu \leq 2 the system reaches complete order exponentially fast. For μ>2\mu >2, a finite system falls, before it fully orders, in a quasistationary state in which the average density of active links (links between opposite-state nodes) in surviving runs is constant and equal to (μ−2)3(μ−1)\frac{(\mu-2)}{3(\mu-1)}, while an infinite large system stays ad infinitum in a partially ordered stationary active state. The mean life time of the quasistationary state is proportional to the mean time to reach the fully ordered state TT, which scales as T∼(μ−1)μ2N(μ−2)μ2T \sim \frac{(\mu-1) \mu^2 N}{(\mu-2) \mu_2}, where NN is the number of nodes of the network, and μ2\mu_2 is the second moment of the degree distribution. We find good agreement between these analytical results and numerical simulations on random networks with various degree distributions.Comment: 20 pages, 8 figure

    Gluon Saturation and Black Hole Criticality

    Full text link
    We discuss the recent proposal in hep-th/0611312 where it was shown that the critical anomalous dimension associated to the onset of non-linear effects in the high energy limit of QCD coincides with the critical exponent governing the radius of the black hole formed in the spherically symmetric collapse of a massless scalar field. We argue that a new essential ingredient in this mapping between gauge theory and gravity is continuous self-similarity, not present in the scalar field case but in the spherical collapse of a perfect fluid with barotropic equation of state. We identify this property with geometric scaling, present in DIS data at small values of Bjorken x. We also show that the Choptuik exponent in dimension five tends to the QCD critical value in the traceless limit of the energy momentum tensor.Comment: Talk given at 12th International Conference on Elastic and Diffractive Scattering: Forward Physics and QCD, Hamburg, DESY, Germany, 21-25 May 200
    • …
    corecore