3,240 research outputs found

    Time scale competition leading to fragmentation and recombination transitions in the coevolution of network and states

    Get PDF
    We study the co-evolution of network structure and node states in a model of multiple state interacting agents. The system displays two transitions, network recombination and fragmentation, governed by time scales that emerge from the dynamics. The recombination transition separates a frozen configuration, composed by disconnected network components whose agents share the same state, from an active configuration, with a fraction of links that are continuously being rewired. The nature of this transition is explained analytically as the maximum of a characteristic time. The fragmentation transition, that appears between two absorbing frozen phases, is an anomalous order-disorder transition, governed by a crossover between the time scales that control the structure and state dynamics.Comment: 5 pages, 5 figures, figures 2 and 4 changed, tile changed, to be published in PR

    Ethnic Studies in Academe: Challenges and Prospects for the 21st Century. NAES Plenary Session , Kansas City,1995 Missouri, March 19, 1994

    Get PDF
    The primary intent of organizing the plenary that follows was to engage a number of dedicated and experienced ethnic studies scholar-activists in a focused conversation on the current state of ethnic studies in the academy. At this point many of us have been involved in ethnic studies for more than twenty years. The perspectives and observations offered in this monograph are transcribed from the recordings of the plenary. It offers the reader a far-ranging discussion of the field, its history, its struggles, its pedagogy, and some of its underlying principles

    Divergent Time Scale in Axelrod Model Dynamics

    Get PDF
    We study the evolution of the Axelrod model for cultural diversity. We consider a simple version of the model in which each individual is characterized by two features, each of which can assume q possibilities. Within a mean-field description, we find a transition at a critical value q_c between an active state of diversity and a frozen state. For q just below q_c, the density of active links between interaction partners is non-monotonic in time and the asymptotic approach to the steady state is controlled by a time scale that diverges as (q-q_c)^{-1/2}.Comment: 4 pages, 5 figures, 2-column revtex4 forma

    Does electing women reduce corruption? A regression discontinuity approach

    Get PDF
    Previous studies uncovered a negative relationship between the proportion of women in public office and corruption. These findings have inspired anti-corruption programs around the world. It remains unclear, however, whether there is a causal link between the share of women in office and malfeasance. For instance, gender differences in political experience or access to corruption networks might explain this relationship. We leverage the gradual implementation of gender quotas in Spain to isolate the effects of female descriptive representation on public misconduct and adjudicate between alternative explanations. The analyses suggest a causal link between gender and malfeasance in office: the reform generated an exogenous increase in the share of women elected, which led to a decrease in corruption that was sustained over time. This finding enhances our understanding of the effect of public officials' characteristics on policy outcomes, and of the role of parity laws in promoting political change

    Rescue of endemic states in interconnected networks with adaptive coupling

    Get PDF
    We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads when the two layers are interconnected but not in each layer separately, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network –and therefore on the interconnected system– the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that rewiring amplifies finite-size effects, preventing the disease transmission between finite networks, as there is a non zero probability that the epidemics stays confined in only one network during its lifetime.Fil: Vazquez, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Consejo Superior de Investigaciones Científicas. Instituto de Física Interdisciplinar y Sistemas Complejos; EspañaFil: Serrano, M. Ángeles. Universidad de Barcelona; España. Institució Catalana de Recerca i Estudis Avancats; EspañaFil: San Miguel, M.. Consejo Superior de Investigaciones Científicas. Instituto de Física Interdisciplinar y Sistemas Complejos; Españ

    Agent Based Models of Language Competition: Macroscopic descriptions and Order-Disorder transitions

    Get PDF
    We investigate the dynamics of two agent based models of language competition. In the first model, each individual can be in one of two possible states, either using language XX or language YY, while the second model incorporates a third state XY, representing individuals that use both languages (bilinguals). We analyze the models on complex networks and two-dimensional square lattices by analytical and numerical methods, and show that they exhibit a transition from one-language dominance to language coexistence. We find that the coexistence of languages is more difficult to maintain in the Bilinguals model, where the presence of bilinguals in use facilitates the ultimate dominance of one of the two languages. A stability analysis reveals that the coexistence is more unlikely to happen in poorly-connected than in fully connected networks, and that the dominance of only one language is enhanced as the connectivity decreases. This dominance effect is even stronger in a two-dimensional space, where domain coarsening tends to drive the system towards language consensus.Comment: 30 pages, 11 figure

    Generic Absorbing Transition in Coevolution Dynamics

    Get PDF
    We study a coevolution voter model on a network that evolves according to the state of the nodes. In a single update, a link between opposite-state nodes is rewired with probability pp, while with probability 1p1-p one of the nodes takes its neighbor's state. A mean-field approximation reveals an absorbing transition from an active to a frozen phase at a critical value pc=μ2μ1p_c=\frac{\mu-2}{\mu-1} that only depends on the average degree μ\mu of the network. The approach to the final state is characterized by a time scale that diverges at the critical point as τpcp1\tau \sim |p_c-p|^{-1}. We find that the active and frozen phases correspond to a connected and a fragmented network respectively. We show that the transition in finite-size systems can be seen as the sudden change in the trajectory of an equivalent random walk at the critical rewiring rate pcp_c, highlighting the fact that the mechanism behind the transition is a competition between the rates at which the network and the state of the nodes evolve.Comment: 5 pages, 4 figure

    Fragmentation transition in a coevolving network with link-state dynamics

    Get PDF
    We study a network model that couples the dynamics of link states with the evolution of the network topology. The state of each link, either A or B, is updated according to the majority rule or zero-temperature Glauber dynamics, in which links adopt the state of the majority of their neighboring links in the network. Additionally, a link that is in a local minority is rewired to a randomly chosen node. While large systems evolving under the majority rule alone always fall into disordered topological traps composed by frustrated links, any amount of rewiring is able to drive the network to complete order, by relinking frustrated links and so releasing the system from traps. However, depending on the relative rate of the majority rule and the rewiring processes, the system evolves towards different ordered absorbing configurations: either a one-component network with all links in the same state or a network fragmented in two components with opposite states. For low rewiring rates and finite-size networks there is a domain of bistability between fragmented and nonfragmented final states. Finite-size scaling indicates that fragmentation is the only possible scenario for large systems and any nonzero rate of rewiring.Instituto de Física de Líquidos y Sistemas Biológico
    corecore