29 research outputs found

    Spatio-Temporal Variability of Atmospheric CO2 as Observed from In-Situ Measurements over North America during NASA Field Campaigns (2004-2008)

    Get PDF
    Regional-scale measurements were made over the eastern United States (Intercontinental Chemical Transport Experiment - North America (INTEX-NA), summer 2004); Mexico (Megacity Initiative: Local and Global Research Observations (MILAGRO), March 2006); the eastern North Pacific and Alaska (INTEX-B May 2006); and the Canadian Arctic (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS), spring and summer 2008). For these field campaigns, instrumentation for the in situ measurement of CO2 was integrated on the NASA DC-8 research aircraft providing high-resolution (1 second) data traceable to the WMO CO2 mole fraction scale. These observations provide unique and definitive data sets via their intermediate-scale coverage and frequent vertical profiles (0.1 - 12 km) for examining the variability CO2 exhibits above the Earth s surface. A bottom-up anthropogenic CO2 emissions inventory (1deg 1deg) and processing methodology has also been developed for North America in support of these airborne science missions. In this presentation, the spatio-temporal distributions of CO2 and CO column values derived from the campaign measurements will be examined in conjunction with the emissions inventory and transport histories to aid in the interpretation of the CO2 observations

    Observations of convective and dynamical instabilities in tropopause folds and their contribution to stratosphere-troposphere exchange

    Get PDF
    With aircraft-mounted in situ and remote sensing instruments for dynamical, thermal, and chemical measurements we studied two cases of tropopause folding. In both folds we found Kelvin-Helmholtz billows with horizontal wavelength of ∼900 m and thickness of ∼120 m. In one case the instability was effectively mixing the bottomside of the fold, leading to the transfer of stratospheric air into the troposphere. Also, we discovered in both cases small-scale secondary ozone maxima shortly after the aircraft ascended past the topside of the fold that corresponded to regions of convective instability. We interpreted this phenomenon as convectively breaking gravity waves. Therefore we posit that convectively breaking gravity waves acting on tropopause folds must be added to the list of important irreversible mixing mechanisms leading to stratosphere-troposphere exchange.United States. National Aeronautics and Space Administration (Grant NAG2-1105)United States. National Aeronautics and Space Administration (Grant NAGl-1758)United States. National Aeronautics and Space Administration (Grant NAGl-1901

    Sources of upper tropospheric HO\u3csub\u3e\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3e over the South Pacific Convergence Zone: A case study

    Get PDF
    A zero‐dimensional (0‐D) model has been applied to study the sources of hydrogen oxide radicals (HOx = HO2 + OH) in the tropical upper troposphere during the Pacific Exploratory Mission in the tropics (PEM‐Tropics B) aircraft mission over the South Pacific in March–April 1999. Observations made across the Southern Pacific Convergence Zone (SPCZ) and the southern branch of the Intertropical Convergence Zone (ITCZ) provided the opportunity to contrast the relative contributions of different sources of HOx, in a nitrogen oxide radical (NOx)‐limited regime, in relatively pristine tropical air. The primary sources of HOx vary significantly along the flight track, in correlation with the supply of water vapor. The latitudinal variation of HOx sources is found to be controlled also by the levels of NOx and primary HOx production rates P(HOx). Budget calculations in the 8‐ to 12‐km altitude range show that the reaction O(1D) + H2O is a major HOx source in the cloud region traversed by the aircraft, including SPCZ and the southern branch of the ITCZ. Production from acetone becomes significant in drier region south of 20°S and can become dominant where water vapor mixing ratios lie under 200 ppmv. Over the SPCZ region, in the cloud outflow, CH3 OOH transported by convection accounts for 22% to 64% of the total primary source. Oxidation of methane amplifies the primary HOx source by 1–1.8 in the dry regions

    Direct Measurements of the Convective Recycling of the Upper Troposphere

    Get PDF
    We present a statistical representation of the aggregate effects of deep convection on the chemistry and dynamics of the Upper Troposphere (UT) based on direct aircraft observations of the chemical composition of the UT over the Eastern United States and Canada during summer. These measurements provide new and unique observational constraints on the chemistry occurring downwind of convection and the rate at which air in the UT is recycled, previously only the province of model analyses. These results provide quantitative measures that can be used to evaluate global climate and chemistry models

    Airborne Observations of the Spatial and Temporal Variability of Tropospheric Carbon Dioxide during the INTEX-B Campaign

    No full text
    The Intercontinental Chemical Transport Experiment-North America (INTEX-NA) is an international field campaign envisioned to investigate the transport and transformation of gases and aerosols on transcontinental/intercontinental scales and assess their impact on air quality and climate. Phase B (INTEX-B) of the mission was conducted during a 10- week period from March 1 to May 15, 2006 and focused initially on pollution outflow from the Mexico City Metropolitan Area, later addressing the transport of pollution from Asia to North America during springtime meteorological conditions. During the deployment, fast-response (1-s resolution) CO2 measurements were recorded aboard the NASA DC-8 providing valuable regional-scale information on carbon sources and sinks over sparsely sampled areas of North America and adjacent ocean basins. When coupled with the enormously sophisticated chemistry payload on the DC-8, these measurements collectively afford extremely powerful multi-tracer constraints for carbon source/sink attribution. Preliminary examination of the two data sets from the INTEX-B campaign, acquired one month apart, reveals not only the influence of the CO2 seasonal cycle, but also the preponderance of human population and industrial activity in the northern hemisphere. In this presentation, a synergy of the ensemble of airborne and surface observations, bottomup emission inventories, as well as transport history are invoked in a GIS framework to elucidate the source/sink processes reflected in the observations. The airborne CO2 data, along with simultaneous surface measurements (e.g. NOAA ESRL), are examined to establish the vertical distribution and variability of CO2 as a function of location. The role of localized sources, long-range transport, the biosphere, stratospheric exchange, and dynamical processes on the CO2 spatial variability observed throughout the tropospheric column will be discussed
    corecore