317 research outputs found

    Self organized mode locking effect in superconductor / ferromagnet hybrids

    Full text link
    The vortex dynamics in a low temperature superconductor deposited on top of a rectangular array of micrometer size permalloy triangles is investigated experimentally. The rectangular unit cell is such that neighboring triangles physically touch each other along one direction. This design stabilizes remanent states which differ from the magnetic vortex state typical of individual non-interacting triangles. Magnetic Force Microscopy images have revealed that the magnetic landscape of the template can be switched to an ordered configuration after magnetizing the sample with an in-plane field. The ordered phase exhibits a broad flux flow regime with relatively low critical current and a highly anisotropic response. This behavior is caused by the spontaneous formation of two separated rows of vortices and antivortices along each line of connected triangles. The existence of a clear flux flow regime even for zero external field supports this interpretation. The density of induced vortex-antivortex pairs is directly obtained using a high frequency measurement technique which allows us to resolve the discrete motion of vortices. Strikingly, the presence of vortex-antivortex rows gives rise to a self organized synchronized motion of vortices which manifests itself as field independent Shapiro steps in the current-voltage characteristics.Comment: 9 pages, 11 figure

    Domain wall displacement in Py square ring for single nanometric magnetic bead detection

    Full text link
    A new approach based on the domain wall displacement in confined ferromagnetic nanostructures for attracting and sensing a single nanometric magnetic particles is presented. We modeled and experimentally demonstrated the viability of the approach using an anisotropic magnetoresistance device made by a micron-size square ring of Permalloy designed for application in magnetic storage. This detection concept can be suitable to biomolecular recognition, and in particular to single molecule detection.Comment: 8pages, 3figure

    On topological spin excitations on a rigid torus

    Full text link
    We study Heisenberg model of classical spins lying on the toroidal support, whose internal and external radii are rr and RR, respectively. The isotropic regime is characterized by a fractional soliton solution. Whenever the torus size is very large, RR\to\infty, its charge equals unity and the soliton effectively lies on an infinite cylinder. However, for R=0 the spherical geometry is recovered and we obtain that configuration and energy of a soliton lying on a sphere. Vortex-like configurations are also supported: in a ring torus (R>rR>r) such excitations present no core where energy could blow up. At the limit RR\to\infty we are effectively describing it on an infinite cylinder, where the spins appear to be practically parallel to each other, yielding no net energy. On the other hand, in a horn torus (R=rR=r) a singular core takes place, while for R<rR<r (spindle torus) two such singularities appear. If RR is further diminished until vanish we recover vortex configuration on a sphere.Comment: 11 pages, 9 figure

    Magnetoplasmonic design rules for active magneto-optics

    Full text link
    Light polarization rotators and non-reciprocal optical isolators are essential building blocks in photonics technology. These macroscopic passive devices are commonly based on magneto-optical Faraday and Kerr polarization rotation. Magnetoplasmonics - the combination of magnetism and plasmonics - is a promising route to bring these devices to the nanoscale. We introduce design rules for highly tunable active magnetoplasmonic elements in which we can tailor the amplitude and sign of the Kerr response over a broad spectral range

    Infection Related Inferior Alveolar Nerve Paresthesia in the Lower Premolar Teeth

    Get PDF
    Introduction. The aim of this paper was to describe two cases of IAN infection-induced paresthesia and to discuss the most appropriate treatment solutions. Methods. For two patients, periapical lesions that induced IAN paresthesia were revealed. In the first case, the tooth was previously endodontically treated, whereas in the second case the lesion was due to pulp necrosis. Results. For the first patient, a progressive healing was observed only after the tooth extraction. In the second patient, the paresthesia had resolved after endodontic treatment. Conclusions. The endodontic-related paresthesia is a rare complication that can be the result of a combination of etiopathogenic mechanisms such as mechanical pressure on the nerve fibers due to the expanding infectious process and the production of microbial toxins. Paresthesia resulting from periapical lesions usually subsides through elimination of infection by root canal treatment. However, if there are no signs of enhancement, the immediate extraction of the tooth is the treatment of choice in order to prevent irreversible paresthesia because it was demonstrated that there is a correlation between the duration of mechanical or chemical irritation and the risk of permanent paresthesia

    Anatomy of ultrafast quantitative magneto-acoustics in freestanding nickel thin films

    Full text link
    We revisit the quantitative analysis of the ultrafast magneto-acoustic experiment in a freestanding nickel thin film by Kim and Bigot [1] by applying our recently proposed approach of magnetic and acoustic eigenmodes decomposition by Vernik et al. [2]. We show that the application of our modeling to the analysis of time-resolved reflectivity measurements allows for the determination of amplitudes and lifetimes of standing perpendicular acoustic phonon resonances with unprecedented accuracy. The acoustic damping is found to scale as ω2\propto\omega^2 for frequencies up to 80~GHz and the peak amplitudes reach 10310^{-3}. The experimentally measured magnetization dynamics for different orientations of an external magnetic field agrees well with numerical solutions of magneto-elastically driven magnon harmonic oscillators. Symmetry-based selection rules for magnon-phonon interactions predicted by our modeling approach allow for the unambiguous discrimination between spatially uniform and non-uniform modes, as confirmed by comparing the resonantly enhanced magneto-elastic dynamics simultaneously measured on opposite sides of the film. Moreover, the separation of time scales for (early) rising and (late) decreasing precession amplitudes provide access to magnetic (Gilbert) and acoustic damping parameters in a single measurement.Comment: 9 pages, 7 figure
    corecore