82 research outputs found

    Abrupt wind regime changes in the North Atlantic Ocean during the past 30,000-60,000 years

    Get PDF
    The inputs of higher plants in Blake Outer Ridge (subtropical western North Atlantic) during marine isotope stage 3 (MIS3) have been recorded at high resolution by quantification of C23–C33 odd carbon numbered n-alkanes and C20–C30 even carbon numbered n-alkan-1-ols in sediment sections of Ocean Drilling Program Site 1060. The changes of these proxies at this open marine site are mainly related to eolian inputs. Their concentrations and fluxes exhibit major abrupt variations that are correlated with Dansgaard/Oeschger (D/O) patterns in Greenland ice cores. The ratios between interstadials and stadials range between 2 and 9 times. The intense flux increases in the D/O stadials are linked to strong enhancements of the westerly wind regime at these subtropical latitudes during stadials. The observed variation was paralleled by changes in wind-blown dust and the polar circulation index in Greenland ice, which is in agreement with previously hypothesized atmospheric teleconnections between northern and middle-low latitudes of the Northern Hemisphere. The close correspondence between sedimentary and ice core proxies is evidence that crossings of the glacial climate thresholds involved major reorganizations of the troposphere. The observed large rise in higher plant biomarkers indicates that climate stabilization in the D/O stadial conditions led to main increases in wind intensity

    Coupled Mg/Ca and clumped isotope analyses of foraminifera provide consistent water temperatures

    Get PDF
    The reliable determination of past seawater temperature is fundamental to paleoclimate studies. We test the robustness of two paleotemperature proxies by combining Mg/Ca and clumped isotopes (Δ47) on the same specimens of core top planktonic foraminifera. The strength of this approach is that Mg/Ca and Δ47 are measured on the same specimens of foraminifera, thereby providing two independent estimates of temperature. This replication constitutes a rigorous test of individual methods with the advantage that the same approach can be applied to fossil specimens. Aliquots for Mg/Ca and clumped analyses are treated in the same manner following a modified cleaning procedure of foraminifera for trace element and isotopic analyses. We analysed eight species of planktonic foraminifera from coretop samples over a wide range of temperatures from 2 to 29°C. We provide a new clumped isotope temperature calibrations using subaqueous cave carbonates, which is consistent with recent studies. Tandem Mg/Ca–Δ47 results follow an exponential curve as predicted by temperature calibration equations. Observed deviations from the predicted Mg/Ca-Δ47 relationship are attributed to the effects of Fe-Mn oxide coatings, contamination, or dissolution of foraminiferal tests. This coupled approach provides a high degree of confidence in temperature estimates when Mg/Ca and Δ47 yield concordant results, and can be used to infer the past δ18O of seawater (δ18Osw) for paleoclimate studies

    100- kyr cyclicity in volcanic ash emplacement: evidence from a 1.1 Myr tephra record from the NW Pacific

    Get PDF
    It is a longstanding observation that the frequency of volcanism periodically changes at times of global climate change. The existence of causal links between volcanism and Earth’s climate remains highly controversial, partly because most related studies only cover one glacial cycle. Longer records are available from marine sediment profiles in which the distribution of tephras records frequency changes of explosive arc volcanism with high resolution and time precision. Here we show that tephras of IODP Hole U1437B (northwest Pacific) record a cyclicity of explosive volcanism within the last 1.1 Myr. A spectral analysis of the dataset yields a statistically significant spectral peak at the ~100 kyr period, which dominates the global climate cycles since the Middle Pleistocene. A time-domain analysis of the entire eruption and δ18O record of benthic foraminifera as climate/sea level proxy shows that volcanism peaks after the glacial maximum and ∼13 ± 2 kyr before the δ18O minimum right at the glacial/interglacial transition. The correlation is especially good for the last 0.7 Myr. For the period 0.7–1.1 Ma, during the Middle Pleistocene Transition (MPT), the correlation is weaker, since the 100 kyr periodicity in the δ18O record diminishes, while the tephra record maintains its strong 100 kyr periodicity

    100- kyr cyclicity in volcanic ash emplacement: evidence from a 1.1 Myr tephra record from the NW Pacific

    Get PDF
    It is a longstanding observation that the frequency of volcanism periodically changes at times of global climate change. The existence of causal links between volcanism and Earth's climate remains highly controversial, partly because most related studies only cover one glacial cycle. Longer records are available from marine sediment profiles in which the distribution of tephras records frequency changes of explosive arc volcanism with high resolution and time precision. Here we show that tephras of IODP Hole U1437B (northwest Pacific) record a cyclicity of explosive volcanism within the last 1.1 Myr. A spectral analysis of the dataset yields a statistically significant spectral peak at the similar to 100 kyr period, which dominates the global climate cycles since the Middle Pleistocene. A time-domain analysis of the entire eruption and delta O-18 record of benthic foraminifera as climate/sea level proxy shows that volcanism peaks after the glacial maximum and similar to 13 +/- 2 kyr before the delta O-18 minimum right at the glacial/interglacial transition. The correlation is especially good for the last 0.7 Myr. For the period 0.7-1.1 Ma, during the Middle Pleistocene Transition (MPT), the correlation is weaker, since the 100 kyr periodicity in the delta O-18 record diminishes, while the tephra record maintains its strong 100 kyr periodicity

    Fast and slow components of interstadial warming in the North Atlantic during the last glacial

    Get PDF
    The abrupt nature of warming events recorded in Greenland ice-cores during the last glacial has generated much debate over their underlying mechanisms. Here, we present joint marine and terrestrial analyses from the Portuguese Margin, showing a succession of cold stadials and warm interstadials over the interval 35–57 ka. Heinrich stadials 4 and 5 contain considerable structure, with a short transitional phase leading to an interval of maximum cooling and aridity, followed by slowly increasing sea-surface temperatures and moisture availability. A climate model experiment reproduces the changes in western Iberia during the final part of Heinrich stadial 4 as a result of the gradual recovery of the Atlantic meridional overturning circulation. What emerges is that Greenland ice-core records do not provide a unique template for warming events, which involved the operation of both fast and slow components of the coupled atmosphere–ocean–sea-ice system, producing adjustments over a range of timescales

    Preparation of amino-substituted indenes and 1,4-dihydronaphthalenes using a one-pot multireaction approach: total synthesis of oxybenzo[c]phenanthridine alkaloids

    Get PDF
    Allylic trichloroacetimidates bearing a 2-vinyl or 2-allylaryl group have been designed as substrates for a one-pot, two-step multi-bond-forming process leading to the general preparation of aminoindenes and amino-substituted 1,4-dihydronaphthalenes. The synthetic utility of the privileged structures formed from this one-pot process was demonstrated with the total synthesis of four oxybenzo[c]phenanthridine alkaloids, oxychelerythrine, oxysanguinarine, oxynitidine, and oxyavicine. An intramolecular biaryl Heck coupling reaction, catalyzed using the Hermann–Beller palladacycle was used to effect the key step during the synthesis of the natural products

    Expedition 350 summary

    Get PDF
    International Ocean Discovery Program (IODP) Hole U1436A (proposed Site IBM-4GT) lies in the western part of the Izu fore-arc basin, ~60 km east of the arc-front volcano Aogashima, ~170 km west of the axis of the Izu-Bonin Trench, and 1.5 km west of Ocean Drilling Program (ODP) Site 792, at 1776 meters below sea level (mbsl). It was drilled as a 150 m deep geotechnical test hole for potential future deep drilling (5500 meters below seafloor [mbsf]) at proposed Site IBM-4 using the D/V Chikyu. Core from Site U1436 yielded a rich record of Late Pleistocene explosive volcanism, including a distinctive black glassy mafic ash layer that may record a large-volume subaqueous eruption on the Izu arc front. Because of the importance of this discovery, Site U1436 was drilled in three additional holes (U1436B, U1436C, and U1436D), as part of a contingency operation, in an attempt to get better recovery on the black glassy mafic ash layer and its enclosing sediments and to better constrain its thickness. IODP Site U1437 is located in the Izu rear arc, ~330 km west of the axis of the Izu-Bonin Trench and ~90 km west of the arc-front volcanoes Myojinsho and Myojin Knoll, at 2117 mbsl. The primary scientific objective for Site U1437 was to characterize “the missing half of the subduction factory” because numerous ODP/Integrated Ocean Drilling Program sites had been drilled in the arc-front to fore-arc region (i.e., ODP Site 782A Leg 126), but this was the first site to be drilled in the rear-arc region of the Izu arc. A complete view of the arc system is needed to understand the formation of oceanic arc crust and its evolution into continental crust. Site U1437 on the rear arc had excellent core recovery in Holes U1437B and U1437D, and we succeeded in hanging the longest casing ever in the history of R/V JOIDES Resolution scientific drilling (1085.6 m) in Hole U1437E and cored to 1806.5 mbsf. The stratigraphy at Site U1437 was divided into seven lithostratigraphic units (I–VII) that were distinguished from each other based on the proportions and characteristics of tuffaceous mud/mudstone and interbedded tuff, lapilli-tuff, and tuff-breccia. The section is much more mud rich than expected, with ~60% tuffaceous mud for the section as a whole (89% in the uppermost 433 m) and high sedimentation rates of 100–260 m/My for the upper 1320 m (Units I–V). The proportion (40%) and grain size of volcaniclastics are much smaller than expected for an intra-arc basin, composed half of ash/tuff and half of lapilli-tuff of fine grain size (clasts <3 cm). These volcaniclastics were deposited by suspension settling through water and from density currents, in relatively distal settings. Volcanic blocks are only sparsely scattered through the lowermost 25% of the section (Units VI and VII, 1320–1806.5 mbsf), which includes hyaloclastite, in situ quench-fragmented blocks, and a rhyolite peperite intrusion (i.e., proximal deposits). The transition from unconsolidated to lithified rocks occurred progressively; however, sediments were considered lithified from 427 mbsf (top of Hole U1437D) downward. Alteration resulted in destruction of fresh glass from ~750 mbsf downward, but minerals are less altered. Because of the alteration, the deepest biostratigraphic datum was at ~850 mbsf and the deepest paleomagnetic datum was at ~1300 mbsf. Additional age control deeper than ~1300 mbsf is provided by an age range of 10.97–11.85 Ma inferred from a nannofossil assemblage at ~1403 mbsf and a preliminary U-Pb zircon concordia intercept age of 13.6 +1.6/−1.7 Ma, measured postcruise on a rhyolite peperite in Unit VI at ~1390 mbsf. Based on the seismic profiles, the Miocene–Oligocene hiatus (~17–23 Ma) was predicted to lie at ~1250 mbsf, but strata at that depth (Unit V, 1120–1312 mbsf) are much younger (~9 Ma), indicating that we recovered a thicker Neogene section of volcaniclastics and associated igneous rocks than anticipated. Our preliminary interpretation of shipboard geochemistry of solids is that arc-front versus rear-arc sources can be distinguished for individual intervals in the upper, relatively distal 1320 m of the section (Units I–V), whereas data for the lower, proximal 25% of the section (Units VI–VII) overlap and exceed the compositional fields for Neogene rear-arc seamounts and Quaternary arc-front volcanoes. This suggests that the compositional divergence between arc-front and rear-arc magmas only fully developed after ~13 Ma

    Izu-Bonin-Mariana Rear Arc - The missing half of the subduction factory, 30 March – 30 May 2014

    Get PDF
    International Ocean Discovery Program (IODP) Hole U1436A (proposed Site IBM-4GT) lies in the western part of the Izu fore-arc basin, ~60 km east of the arc-front volcano Aogashima, ~170 km west of the axis of the Izu-Bonin Trench, 1.5 km west of Ocean Drilling Program (ODP) Site 792, and at 1776 meters below sea level (mbsl). It was drilled as a 150 m deep geotechnical test hole for potential future deep drilling (5500 meters below seafloor [mbsf]) at proposed Site IBM-4 using the D/V Chikyu. Core from Site U1436 yielded a rich record of Late Pleistocene explosive volcanism, including distinctive black glassy mafic ash layers that may record large-volume eruptions on the Izu arc front. Because of the importance of this discovery, Site U1436 was drilled in three additional holes (U1436B, U1436C, and U1436D), as part of a contingency operation, in an attempt to get better recovery on the black glassy mafic ash layers and enclosing sediments and to better constrain the thickness of the mafic ash layers. IODP Site U1437 is located in the Izu rear arc, ~330 km west of the axis of the Izu-Bonin Trench and ~90 km west of the arc-front volcanoes Myojinsho and Myojin Knoll, at 2117 mbsl. The primary scientific objective for Site U1437 was to characterize “the missing half of the subduction factory”; this was because numerous ODP/Integrated Ocean Drilling Program sites had been drilled in the arc to fore-arc region (i.e., ODP Site 782A Leg 126), but this was the first site to be drilled in the rear part of the Izu arc. A complete view of the arc system is needed to understand the formation of oceanic arc crust and its evolution into continental crust. Site U1437 on the rear arc had excellent core recovery in Holes U1437B and U1437D, and we succeeded in hanging the longest casing ever in the history of R/V JOIDES Resolution scientific drilling (1085.6 m) in Hole U1437E and cored to 1806.5 mbsf. The stratigraphy at Site U1437 was divided into seven lithostratigraphic units (I–VII) that were distinguished from each other based on the proportions and characteristics of tuffaceous mud/mudstone and interbedded tuff, lapilli tuff, and tuff breccia. The section is much more mud rich than expected, with ~60% tuffaceous mud for the section as a whole (89% in the uppermost 433 m) and high sedimentation rates of 100–260 m/My for the upper 1320 m (Units I–V). The proportion (40%) and grain size of tephra are much smaller than expected for an intra-arc basin, composed half of ash/tuff and half of lapilli tuff of fine grain size (clasts < 3 cm). These were deposited by suspension settling through water and from density currents, in relatively distal settings. Volcanic blocks are only sparsely scattered through the lowermost 25% of the section (Units VI and VII, 1320–1806.5 mbsf), which includes hyaloclastite, in situ quench-fragmented blocks, and a rhyolite peperite intrusion (i.e., proximal deposits). The transition from unconsolidated to lithified rocks occurred progressively; however, sediments were considered lithified from 427 mbsf (top of Hole U1437D) downward. Alteration resulted in destruction of fresh glass from ~750 mbsf downward, but minerals are less altered. Because of the alteration, the deepest biostratigraphic datum was at ~850 mbsf and the deepest paleomagnetic datum was at ~1300 mbsf. Additional age control deeper than this depth is provided by an age range of 10.97–11.85 Ma inferred from a nannofossil assemblage at ~1403 mbsf and a preliminary U-Pb zircon concordia intercept age of 13.6 +1.6/–1.7 Ma, measured postcruise on a rhyolite peperite in Unit VI at ~1390 mbsf. Based on the seismic profiles, the Miocene–Oligocene hiatus (~17–23 Ma) was predicted to lie at ~1250 mbsf, but strata at that depth (Unit V, 1120–1312 mbsf) are much younger (~9 Ma), indicating that we recovered a thicker Neogene section of volcaniclastics and associated igneous rocks than anticipated. Our preliminary interpretation of shipboard geochemistry is that arc-front versus rear-arc sources can be distinguished in the upper, relatively distal 1320 m of section (Units I–V), whereas the lower, proximal 25% of the section (Units VI–VII) may be geochemically heterogeneous, suggesting that the rear-arc magmas only fully compositionally diverged after ~13 Ma

    Expedition 350 methods

    Get PDF
    Introduction This chapter of the International Ocean Discovery Program (IODP) Expedition 350 Proceedings volume documents the procedures and tools employed in the various shipboard laboratories of the R/V JOIDES Resolution during Expedition 350. This information applies only to shipboard work described in the Expedition Reports section of this volume. Methods for shore-based analyses of Expedition 350 samples and data will be described in the individual scientific contributions to be published in the open literature or in the Expedition Research Results section of this volume. This section describes procedures and equipment used for drilling, coring, and hole completion; core handling; computation of depth for samples and measurements; and sequence of shipboard analyses. Subsequent sections describe specific laboratory procedures and instruments in more details
    corecore