7,079 research outputs found

    Natural environment design criteria for the Advanced X-ray Astrophysics Facility (AXAF) definition and preliminary design

    Get PDF
    This document provides the natural environment design criteria requirements for use in the Advanced X-Ray Astrophysics Facility (AXAF) definition and preliminary design studies. The atmospheric dynamic and thermodynamic environments, meteoroids, radiation, magnetic fields, and physical constants are all addressed. This information will enable all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements

    Cavitation induced starvation for piston-ring/liner tribological conjunction

    Get PDF
    The study investigates the mechanism of ring-liner lubrication in the vicinity of the top and bottom dead centres of an internal combustion engine. Predicting lubricant transient behaviour is critical when the inlet reversal leads to thin films and inherent metal-to-metal interaction. It was found that the cavitation, which is located at the trailing edge of the contact before reversal, briefly survives after reversal as a confined bubble at the leading edge. This depletes the film promoting starvation. Several algorithms were compared. It is concluded that the lubricant film is thinner than initially thought

    Polyimide weld bonding for titanium alloy joints

    Get PDF
    Two weld bonding processes were developed for joining titanium alloy; one process utilizes a weld-through technique and the other a capillary-flow technique. The adhesive used for the weld-through process is similar to the P4/A5F system. A new polyimide laminating resin, BFBI/BMPM, was used in the capillary-flow process. Static property information was generated for weld-bonded joints over the temperature range of 219 K (-65 F) to 561 K (+550 F) and fatigue strength information was generated at room temperature. Significant improvement in fatigue strength was demonstrated for weld-bonded joints over spot-welded joints. A demonstration was made of the applicability of the weld-through weld-bonding process for fabricating stringer stiffened skin panels

    Development of autoclavable addition type polyimides

    Get PDF
    Two highly promising approaches to yield autoclavable addition-type polyimides were identified and evaluated in the program. Conditions were established for autoclave preparation of Hercules HMS graphite fiber reinforced composites in the temperature range of 473 K to 505 K under an applied pressure of 0.7 MN/m2 (100 psi) for time durations up to four hours. Upon oven postcure in air at 589 K, composite samples demonstrated high mechanical property retention at 561 K after isothermal aging in air for 1000 hours. Promise was shown for shorter term mechanical property retention at 589 K upon exposure in air at this temperature

    Development of autoclavable polyimides

    Get PDF
    A poly(Diels-Alder) (PDA) resin approach was investigated as a means to achieve autoclavability of high temperature resistant resin/fiber composites under mild fabrication procedures. Low void content Type A-S graphite reinforced composites were autoclave fabricated from a PDA resin/fiber prepared from an acetone:methanol:dioxane varnish. Autoclave conditions were 477K (400F) and 0.7 MN/sq m (100 psi) for up to two hours duration. After postcure at temperatures up to 589K (600F), the composites demonstrated high initial mechanical properties at temperatures up to 561K (550F). The results from isothermal aging studies in air for 1000 hours indicated potential for long-term ( 1000 hours) use at 533K (500F) and shorter-term (up to 1000 hours) at 561K (550F)

    Development of autoclave moldable addition-type polyimides

    Get PDF
    Chemistry and processing modifications of the poly(Diels Alder) polyimide (PDA) resin were performed to obtain structural composites suitable for 589 K (600 F) service. This work demonstrated that the PDA resin formulation is suitable for service at 589 K (600 F) for up to 125 hours when used in combination with Hercules HTS graphite fiber. Sandwich panels were autoclave molded using PDA/HTS skins and polyimide/glass honeycomb core. Excellent adhesion between honeycomb core and the facing skins was demonstrated. Fabrication ease was demonstrated by autoclave molding three-quarter scale YF-12 wing panels

    Performance Evaluation and Optimization of Math-Similarity Search

    Full text link
    Similarity search in math is to find mathematical expressions that are similar to a user's query. We conceptualized the similarity factors between mathematical expressions, and proposed an approach to math similarity search (MSS) by defining metrics based on those similarity factors [11]. Our preliminary implementation indicated the advantage of MSS compared to non-similarity based search. In order to more effectively and efficiently search similar math expressions, MSS is further optimized. This paper focuses on performance evaluation and optimization of MSS. Our results show that the proposed optimization process significantly improved the performance of MSS with respect to both relevance ranking and recall.Comment: 15 pages, 8 figure

    On the dimension of subspaces with bounded Schmidt rank

    Get PDF
    We consider the question of how large a subspace of a given bipartite quantum system can be when the subspace contains only highly entangled states. This is motivated in part by results of Hayden et al., which show that in large d x d--dimensional systems there exist random subspaces of dimension almost d^2, all of whose states have entropy of entanglement at least log d - O(1). It is also related to results due to Parthasarathy on the dimension of completely entangled subspaces, which have connections with the construction of unextendible product bases. Here we take as entanglement measure the Schmidt rank, and determine, for every pair of local dimensions dA and dB, and every r, the largest dimension of a subspace consisting only of entangled states of Schmidt rank r or larger. This exact answer is a significant improvement on the best bounds that can be obtained using random subspace techniques. We also determine the converse: the largest dimension of a subspace with an upper bound on the Schmidt rank. Finally, we discuss the question of subspaces containing only states with Schmidt equal to r.Comment: 4 pages, REVTeX4 forma

    JULES-BE:Representation of bioenergy crops and harvesting in the Joint UK Land Environment Simulator vn5.1

    Get PDF
    We describe developments to the land surface model JULES, allowing for flexible user-prescribed harvest regimes of various perennial bioenergy crops or natural vegetation types. Our aim is to integrate the most useful aspects of dedicated bioenergy models into dynamic global vegetation models, in order that assessment of bioenergy options can benefit from state-of-the-art Earth system modelling. A new plant functional type (PFT) representing Miscanthus is also presented. The Miscanthus PFT fits well with growth parameters observed at a site in Lincolnshire, UK; however, global observed yields of Miscanthus are far more variable than is captured by the model, primarily owing to the model's lack of representation of crop age and establishment time. Global expansion of bioenergy crop areas under a 2 ?C emissions scenario and balanced greenhouse gas mitigation strategy from the IMAGE integrated assessment model (RCP2.6- SSP2) achieves a mean yield of 4.3 billion tonnes of dry matter per year over 2040-2099, around 30 % higher than the biomass availability projected by IMAGE. In addition to perennial grasses, JULES-BE can also be used to represent short-rotation coppicing, residue harvesting from cropland or forestry and rotation forestry

    Development of a high-altitude airborne dial system: The Lidar Atmospheric Sensing Experiment (LASE)

    Get PDF
    The ability of a Differential Absorption Lidar (DIAL) system to measure vertical profiles of H2O in the lower atmosphere was demonstrated both in ground-based and airborne experiments. In these experiments, tunable lasers were used that required real-time experimenter control to locate and lock onto the atmospheric H2O absorption line for the DIAL measurements. The Lidar Atmospheric Sensing Experiment (LASE) is the first step in a long-range effort to develop and demonstrate an autonomous DIAL system for airborne and spaceborne flight experiments. The LASE instrument is being developed to measure H2O, aerosol, and cloud profiles from a high-altitude ER-2 (extended range U-2) aircraft. The science of the LASE program, the LASE system design, and the expected measurement capability of the system are discussed
    corecore