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DEVELOPMENT OF AUTOCLAVABLE POLYIMIDES

by

M. K. O'Rell, C. H. Sheppard, R. W. Vaughan and R. J. Jones

SUMMARY

This report is the final program report document describing work per-

formed by TRW Systems for the National Aeronautics and Space Administration,

Lewis Research Center, under Contract NAS3-17770. The objective of this

program was to develop addition-type polyimide resins which could be pro-

cessed at a maximum of 477 0 K (400'F) and 1.4 MN/m 2 (200 psi) for use as

matrix resins in high temperature resistant resin/fiber composites. The

program objective was accomplished by sequential program tasks which included

1) model compound studies and polymer synthesis and characterization, 2) auto-

clave process screening, 3) resin/process reproducibility studies and 4) de-

tailed long-term testing of autoclave fabricated composites.-

The first phase of the work involved mechanism studies of a model com-

pound simulating the structure of polymers prepared by a poly(Diels-Alder)

(PDA) method which was shown previously in Contract NAS3-15834 to autoclave

process at temperatures near 477 0 K (4000 F). Although prior polymerization

studies gave strong evidence that intermediate resin structures undergo

in situ aromatization at temperatures up to 589
0K (600'F), a different

behavior was observed in the model study. The model compound did not give

the expected aromatic structures at temperatures up to 5890 K. Instead,

products were obtained which apparently resulted from a complex set of

reactions including homopolymerization of the maleic species formed by a

reverse Diels-Alder reaction. This behavior was not observed in subsequent

polymer studies and it was concluded that the model compound was not of

sufficient molecular weight or had a molecular structure non-representative

of PDA polymers.

The major emphasis in Task I was placed on detailed investigation of

the poly(Diels-Alder) (PDA) polymerization reaction of bis(furanimide)

Preceding page blank
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compounds and bis(maleimides) at temperatures of approximately 4770 K (400'F).

Postcure studies at temperatures up to 589 0 K then were conducted on the

resin products initially cured. The studies showed that a combination of

bis(furfuryl) benzophenone tetracarboxylic imide (BFBI) and bis(4-maleimido-

phenyl) methane (BMPM) gave neat polymers meeting program thermo-oxidative

stability objectives [i.e., 561 0 K-5890 K (550oF-600°F)].

The results of the polymer study were employed to structure autoclave

fabrication process matrices. Screening studies were conducted and process

variable levels within program goals were conducted in an autoclave employing

Hercules A-S fiber as a reinforcement. During processing studies, dimethyl

formamide (DMF), N-methylpyrrolidinone (NMP) and solvent mixtures prepared

from dioxane were evaluated as varnish solvents. Autoclave conditions suit-

able to prepare low void content laminates possessing high initial mechanical

strengths at room temperature (R.T.) and 561 0K (550'F) were identified

employing a prepreg prepared from a tersolvent consisting of a 1:1:1 by

weight mixture of acetone, methanol and dioxane.

Further studies of the resin and process in the tersolvent indicated

that purity of the BMPM used in the PDA reaction and the postcure cycle were

of critical importance to obtaining composites with high initial and

retained mechanical strengths and low void contents. Composites of up to

254-mm (10.00-inches) x 292-mm (11.50-inches) x 3.2-mm (0.12-inch) were

then produced for detailed testing studies described below.

In the final phase of the program,mechanical properties of composites

prepared by the PDA approach were determined before, during and after isothermal

aging of specimens at 533°K (500 0F) and 561 0 K (550 0 F) in air for 1000 hours.

Retention of properties after the aging period gave strong evidence that the

PDA system is suitable for <477 0 K (4000 F) and 0.7 MN/m 2 (100 psi) autoclave

fabrication of composites possessing useful long-term properties at 561 0 K (550'F).

vi
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I. INTRODUCTION

This final report presents the work accomplished by TRW Systems for

the National Aeronautics and Space Administration, Lewis Research Center,

under Contract NAS3-17770, during the period of 26 June 1973 through 25

June 1974. This program consisted of experimental studies to develop low

temperature [477 0K (4000F)], low pressure [0.7 MN/m 2 (100 psi)] curing,

autoclavable polyimides. The studies consisted of detailed evaluation of

a poly(Diels-Alder) (PDA) reaction which was shown to be promising in

Contract NAS3-15834 (Reference 1) as a lower temperature curing resin

alternative to pyrolytically polymerizable polymers. The autoclavable

resins are intended for use as matrix resins in high performance graphite

fiber reinforced airframe structural components.

The concept investigated in this program concerned development of a

viable alternative resin system to the A-type or pyrolytically polymeriza-

tion resins. It was shown in Contract NAS3-15834 (Reference 1) that the

A-type polymers discovered in Contract NAS3-7949 (Reference 2) would not

cure at the 477 0K temperature objective. As a result, a new approach which

incorporates a novel polymerization/aromatization reaction sequence and was

developed under Independent Research and Development funds at TRW Systems

(Reference 3) was investigated in Contract NAS3-15834 (Reference 1). This

approach is similar in nature to the polymerization of monomeric reactants

(PMR) approach developed at NASA/Lewis Research Center (Reference 4) in that

monomeric type ingredients are employed directly, but differs significantly

in the polymerization method.

The new reaction route to polyimides consists of a poly(Diels-Alder)

(PDA) addition-type condensation of bis(furan) capped imides and bis

(dieneophiles). These ingredients polymerize at or below 4770 K (4000F)

to give initially an oxygen bridged six-membered ring polymers which sub-

sequently undergo in situ thermal aromatization through loss of a mole of

water to give aromatic polyimide structures. It was experimentally shown

that the most versatile ingredient combination suitable for use in the

program was bis(furfuryl) benzophenone tetracarboxylic imide (BFBI) and

bis(4-maleimidophenyl) methane (BMPM) combined in a one to one stoichio-

metric ratio. Parallel mechanism studies to resin screening were conducted

in attempts to verify the postulated in situ aromatization reaction. How-

ever, conclusive experimental evidence verifying this reaction was not

obtained from the model compound employed.

1
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Fabrication studies were conducted on the PDA resin consisting of

BFBI and BMPM. Attempts to reproduce preliminary data obtained from com-

posites prepared from Type A-S fiber and dimethyl formamide (DMF) solvent

(Contract NAS3-15834), as well as investigations employing N-methylpyrrolidinone

(NMP) as the laminating solvent, were unsuccessful. The composites prepared

using DMF and NMP as solvents had high void contents (>5% w/v) and low

[49.9 MN/m 2 (7100 psi)] interlaminar shear strengths.

Consequently, studies were then conducted to identify a solvent system

yielding prepreg of acceptable quality [i.e., sufficient tack and drape and

processability (drying behavior similar to or improved over DMF)] which

would yield autoclaved composites of high initial properties at R.T. and

at 561 0 K (550 0F) or greater. A tersolvent combination consisting of acetone,

methanol and dioxane in a 1:1:1 by weight ratio was found to provide the

improved system.

Studies were then conducted to establish the reproducibility of the

BFBI/BMPM combination, the tersolvent and selected autoclave process. The

criteria used for judgment of reproducibility were high composite mechani-

cal properties and low (<2%) void contents as determined by calculated

values and ultrasonic (C-scan) measurements. It was shown that the purity

of the BMPM ingredient and a staged postcure cycle from 477 0 K (400'F) to

5890K (6000F) are critical to obtain reproducible composites possessing

70.0 MN/m2 (10,000 psi) shear strengths and 1750 MN/m 2 (250 ksi) flexural

strengths of which 70% retention was obtained initially at 561 0K (550 0F).

The most promising resin/solvent/process was used to prepare Hercules

Type A-S graphite fiber reinforced composites for detailed testing. Pro-

perty data obtained before, during and after 1000 hours isothermal aging

in air at 533 0 K (5000 F) and 561 0 K (550 0F) gave strong evidence that BFBI/

BMPM A-S composites are suitable for use at these temperatures for long

durations. These test results gave insight into plausible PDA ingredient

modifications which yield zero defect autoclaved parts suitable for use at

589 0K (600 0F).

This report is divided into four sections covering the program technical

tasks: 1) (Task I) - Polymer Synthesis and Characterization, 2) (Task II) -

Process Development and Evaluation, 3) (Task III) - Reproducibility Studies

2



CR 134716
24675-6012-RU-00

and 4) (Task IV) - Final Composite Characterization. The significant con-

clusions reached from program studies are listed together with recommenda-

tions for activities that warrant further studies. This report also iden-

tifies new technology originating from the program in a separate section.

The detailed information presented in the main body of this report is

supplemented by Appendices covering procedures, characterization methodology

and test equipment.

3
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II. TASK I - POLYMER SYNTHESIS AND EVALUATION

The objective of this task was to prepare and evaluate new resin com-

positions specifically designed to improve the processability and thermo-

oxidative stability of the poly(Diels-Alder) (PDA) derived addition-type

polyimide resins developed in Contract NAS3-15834. Additionally, a more

thorough understanding of the mechanism of the in situ dehydration of the

oxygen-bridged intermediate in the poly(Diels-Alder) (PDA) reaction was

sought.

The mechanism study was conducted on a simple model compound selected

to be representative of the bridged adduct intermediate in the poly(Diels-

Alder) (PDA) reaction. The model compound was subjected to a number of

simulated processing conditions and the resulting products were character-

ized by spectroscopic methods. Details of this study are presented in

Section 2.1.

The results obtained in Contract NAS3-15834 demonstrated that the

PDA approach showed excellent promise to provide autoclave fabricated,

high modulus graphite reinforced composites. However, it also was evident

that additional resin development studies were necessary to achieve opti-

mum combinations of mechanical properties and processability. Consequently,

studies were conducted on a modified resin system specifically tailored

to meet the program objectives. The most significant result of the resin

studies was the finding that the mixture of bis(4-maleimidophenyl) methane

(BMPM) and bis(2-furfuryl) benzophenone tetracarboxylic imide (BFBI)

monomers can be cured at temperatures as low as 450 0K (350 0F). The results

of the resin studies are described in Section 2.2.

2.1 MECHANISM STUDIES

The mechanism study of the poly(Diels-Alder) (PDA) reaction was under-

taken in an attempt to understand more fully the chemistry of this polymer

system. This basic understanding of the chemistry was sought to aid in

the optimization of the PDA resins and to help in the selection of a pro-

cessing cycle. The studies were conducted using a simple model compound

whose structure was selected to simulate the simplest PDA adduct. A des-

cription of these studies is given in the following sections.

5 Preceding page blank
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2.1.1 Preparation and Characterization of Model Compounds

The model compound selected for this mechanism study was the Diels-

Alder adduct of N-phenyl maleimide (I) and N-furfuryl phthalimide (II),

specifically compound III obtained according to the equation below. Com-

pounds I and II were prepared by normal synthesis procedures which are

described in Appendix A.l. Both model precursors, after synthesis, were

characterized by infrared (ir) and nuclear magnetic resonance (nmr) spec-

troscopy (see Appendix A.l).

0 0

CNo \N

C C

0

II

O C
\ / 2

C/

(III)

0

The Diels-Alder adduct, compound III, was prepared by heating an

equal molar mixture of I and II in solution. Three different solvents

were evaluated for use in this reaction, namely ethanol, ether and toluene.

All three solvents gave some adduct as indicated by thin layer chromato-

graphy (tlc), but ethanol was found to be the best solvent. Simply

refluxing a solution of I and II in ethanol for 18 hours gave the adduct

6
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as a colorless precipitate in 80% yield. The adduct was characterized by

ir and nmr analysis. The spectra may be found in Appendix A.I. The ir

spectrum contains two carbonyl bands at 1715 and 1775 cm-1 , indicative of

the presence of imide. To permit comparison of the ir spectra of the adduct

and the starting materials (I and II), an equimolar blend (physical mixture)

of I and II was prepared and an ir was obtained (Figure A.4). The signifi-

cant difference between the spectra is in the 1200 cm-1. region. The ir spec-

trum of the adduct has a very strong band at 1190 cm which does not appear

to any great degree in the spectrum for the blend of I and II. This new

band was ascribed to the oxybridge, as supported by the fact that alicyclic

ethers generally display a band in the 1200 cm-1 region (Reference 5) . The

nmr spectrum (Figure A.6) for the oxygen bridged adduct, III, is also consis-

tent for the structure and the band assignments are discussed in detail in

Appendix A.l.

2.1.2 Mechanism Study of in situ Aromatization

Studies were conducted on the postulated in situ aromatization of the

oxygen bridged model Compound III to Compound IV as shown below. The first

experiment performed with the model Compound III was to subject it to thermo-

gravimetric analysis (TGA) in nitrogen. This experiment was conducted in order

0_ 0

(AROMAT IZE) 0 0

O CH

a CH2 
) CH2N N/ 2

0 0

(III) (IV)

to determine weight loss (postulated to be loss of water) as a func-

tion of'temperature. The theoretical weight loss expected for the dehy-

dration step is 4.5% w/w. However, the TGA scan obtained for Compound III

7
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showed no perceptible weight loss until 448 0K and then a sudden loss

(ca. 80%) occurred. The 4480K temperature corresponds closely to the

melting point of the adduct (see Appendix A.l ) and the observed weight

loss was attributed to the liquid vaporizing in the air stream rather than

the occurrence of the desired dehydration reaction.

Differential scanning calorimetry (DSC) also was employed in an attempt

to define the temperature range where the postulated dehydration occurs.

However, the results of the DSC study also were not useful in determining

the temperature at which dehydration begins or becomes significant. Above

the melting point (448 0K),there were no definitive endotherms orexotherms

observed in the DSC scan. Consequently, it was concluded that for the model

compound, the dehydration probably takes place over a broad temperature range

rather than occurring at a particular temperature or narrow temperature

range.

An experimental matrix (Figure 1) then was designed for subjecting

the oxygen bridged adduct (III) to simulated autoclave conditions. The

experimental procedure used for this work was identical to that employed

during the PDA resin work on Contract NAS3-15834 (Reference 1). All residues

produced during this work were glassy solids and were found to be soluble

(>15% w/w) in DMF and chloroform. Weight losses of the samples were deter-

mined at the end of the heating cycle. The results obtained from this

study are presented in Table I.

TEMPERATURE TIME, HR

oK/°F 2 4 6

450/350 X X X

464/375 X X

477/400 X X

505/450 X X

Figure 1. Experimental Matrix to Study

In Situ Aromatization on Model Compound

8
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TABLE I

RESULTS OF IN SITU AROMATIZATION STUDY ON MODEL COMPOUND

Experimental Conditionsa

Temperature Time, Hr. Weight Loss After
OK/OF Heating, % w/w

450/350 2 2.41

4 1.87

6 3.71

464/375 4 2.77

6 5.71

477/400 2 3.09

4 4.44

505/450 2 5.18

4 11.43

aOther conditions, pressure 0.7 MN/m 2 (100 psi)

bSome sample lost during experimentation

The weight loss measurements presented in Table I were interpreted to

indicate that the desired aromatization reaction was occurring to some

extent over the entire temperature range. It was assumed that the observed

weight loss could be used as a measure of the degree to which the desired
dehydration reaction had occurred. However, when the pyrolysis residues

were characterized by nuclear magnetic resonance (nmr) spectroscopy, it was

shown that this assumption was incorrect and that the dehydration reaction

had not occurred to a significant extent. A discussion of these findings

is given below.

The nmr spectra for a number of the pyrolysis residues are shown in

Figure A.6 through Figure A.9 (see Appendix A.1). The nmr spectra are
arranged such that the effects of temperature and time are clearly illustrated.

For example, the spectrum obtained from the pyrolysis residue heated at 450 0K

9
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(3500F) for 2 hours is shown in Figure A.6 . The important features in the

spectrum are the appearance of two bands at 3.77 T and 5.25T. These bands are

appropriate for the protons on the furan ring and the methylene protons,

respectively, for N-furfuryl phthalimide (Compound II). The formation of

Compound II is attributed to the occurrence of a reverse Diels-Alder reaction

during the pyrolysis run. Additional evidence that the reverse Diels-Alder

reaction occurred was obtained from the spectra of the pyrolysis residues

run at higher temepratures.

The spectra for the residues heated to 464°K (375 0 F) for 4 and 6 hours

clearly illustrate that as the duration of heating is increased, the band at
6 .95T becomes less intense and, at the same time, the band at 5.25T increases

in intensity. In addition, the other bands in the spectra attributed the

oxybridged adduct (III) become less intense as time is increased giving further

evidence that the amount of the adduct is decreasing.

The same results were observed for the samples pyrolyzed at 477 0K (4000 F).

The upfield band at 6 .98T becomes less intense while the 5.25T band increases

in intensity. Finally, the nmr spectrum (Figure A.9 ) for the sample heated

at 505 0K (4500F) for 2 hours shows that under these conditions the adduct

(Compound III) is completely converted to Compound I and Compound II.

The pyrolysis residues also were analyzed by infrared (ir) spectroscopy.

Limited information was obtained from the spectra because only minor changes

could be detected. The most useful information obtained from the ir spectra

did show the relative intensity of the band at 1190 cm-1 decreases as time

and temperature are increased. This band was assigned to the oxygen bridge

of the adduct and the decrease in intensity of this band supports the conclu-

sion reached earlier from the nmr data that the amount of oxybridged adduct

does decrease as temperature and time are increased.

Additional data also were gained during this work by trapping the

effluents of selected pyrolysis runs. In a typical run, after the heating

period was complete, the nitrogen used to pressurize the system was passed

through a cold trap (acetone/dry ice) and then a moderate vacuum was applied

to the pyrolysis apparatus to remove any additional volatile matter. The

contents of the cold traps were analyzed by mass spectroscopy (ms) and found

to be water. However, the quantity of water trapped during a typical pyrolysis

run was a very small fraction of the theoretical amount. For example, the
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5 mg of water collected from the sample pyrolyzed at 505 0K (4500 F) for 2

hours accounts for ca. 1% of the theoretical amount of water to be evolved

during aromatization. The results of the trapping experiments obtained

for the model compound are in sharp contrast to those obtained for the PDA

resin derived from BMPM and bis(2-furfuryl) pyromellitimide (BFPI). During

work performed on Contract NAS3-15834, it was found that the amount of water

trapped under identical pyrolysis and trapping conditions accounted for ca.

20% (w/w) of theoretical indicating that the aromatization reaction was

occurring to some degree. Additional water also was lost during postcure

of the PDA resin to give over 80% (w/w) of theoretical amount water.

The failure to observe the postulated and desired in situ dehydration

of the model oxybridged adduct (III) was very disappointing in view of

observations made during previous experimental work on the PDA-type resins

in Contract NAS3-15834. As was stated above, in the previous work using

polymeric material, up to 80% of the theoretical amount of water from

in situ aromatization of the oxygen bridge was isolated and identified.

Also, and of greatest significance, resins derived from PDA-type polymeri-

zations demonstrated excellent weight and property retention at 561 0 K

(550'F) in air for 1000 hours. Therefore, it is strongly believed that

the primary linkage resulting from the PDA approach is substantially aro-

matic in character because of the superior high temperature performance

established in Contract NAS3-15834 for PDA resins.

2.2 RESIN MODIFICATION STUDIES

The resin modification studies were conducted in order to find a PDA

resin which possessed the optimum combination of thermo-oxidative

stability/processability/mechanical property characteristics. The reaction

sequence developed in Contract NAS3-15834 to form the PDA resin from BFBI

and BMPM is shown on the following page. These ingredients polymerize

at or below 477 0K (4000F) to give initially an oxygen bridged six membered

ring polymer which undergo in situ thermal aromatization through loss of

water to give aromatic polyimide structures. The studies performed in

this program included the examination of the effect of cure temperature

and/or postcure cure time on the simplest PDA resin from BFBI/BMPM. A

new PDA resin also was prepared which contained unsaturated sites in the

backbone for subsequent use in preparing a crosslinked PDA resin. These

studies are described in the following paragraphs.

11
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2.2.1 BFBI/BMPM Cure Studies

Experimental studies were conducted to evaluate the use of lower cure

temperatures [below 474°K (4000F)] for the PDA approach employing BFBI and

BMPM. In this study, a stoichiometric mixture of BFBI/BMPM ingredients was

cured for four hours at 1.4 MN/m2 (200 psi) at each of the following tempera-

tures: 4500K (350°F), 464eK (375 0F) and 474*K (400AF). Each polymer

sample obtained from the above cure conditions was a well consolidated plug

indicating that melt and flow occurred before final cure. However, a sample

heated at 436 0K (3250F) failed to melt and flow indicating 4500K (3500F) is

near the lowest cure temperature for this system.

The polymer samples (plugs) obtained above were subsequently postcured

in a forced-air oven employing a postcure cycle which consisted of a

four-hour linear heat-up rate from 477 0K (4000F) to 589 0K (6000F) followed

by heating at 589 0K for four hours. The results of this experimentation

are given in Table II. As can be seen in Table II, the samples display very

little difference in thermo-oxidative stabilities indicating that cure

temperatures as low as 4500K are useful for this system. The postcured

samples then were evaluated for long-term thermo-oxidative stability by

isothermally aging them for 300 hours at 533 0K (500 0F) and 561 0K (550 0F).

The results of the aging study are presented in Table V in Section 2.2.4.

TABLE II

SUMMARY OF CURE STUDIES ON BFBI/BMPM MIXTUREa

Cure Temperature Weight Loss During Temperature of Initial
(oK/OF)b Cure (% w/w) Weight Loss in TGA

_(K/OF)c

450/350 0.75 623/662

464/375 0.34 611/640

474/400 1.3 611/640

a. Employing stoichiometric mixture of BFBI/BMPM ingredients.

b. Other cure conditions; 4 hours and 1.4 MN/m 2 (200 psi).

c. Scan rate 30K/min. and air flow 100 ml/min.
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2.2.2 Postcure Studies on BFBI/BMPM Resin

Concurrent with the cure temperature studies described above, experi-

mental studies were conducted to determine the effect of postcure conditions

on the BFBI/BMPM resin. This information was sought to supplement the data

which were originally generated in Contract NAS3-15834. The results were

to be used ultimately to help in the selection of a postcure cycle for the

composites prepared in Task II studies.

For the postcure studies, the monomers were cured employing the same

polymerization conditions as used in Contract NAS3-15834, namely a cure

duration of four hours at 505 0K (4500F) and 1.4 MN/m
2 (200 psi). The resin

samples were subsequently postcured as solid plugs in a forced air oven

employing a cycle which consisted of a four-hour linear heat-up rate from

477 0K (4000F) to 589 0 K (6000 F) followed by heating at 5890 K for one, two,

four, eight, eighteen, twenty-four and forty-eight hours. The residues

then were subjected to thermogravimetric analysis. The results of this

experimentation are summarized in Table III.

The results presented in Table III show that all the postcured samples

exhibit essentially the same initial thermo-oxidative stability (ITOS) as

measured by TGA. A small increase in ITOS (%IO0 K/18*F) was observed in the

samples postcured for eight and eighteen hours. However, as the postcure

cycle was extended beyond eiqhteen hours, the neat resin samples displayed a

reduced ITOS. In addition, the samples continued to lose weight as the

postcure cycle was extended indicating that the observed weiqht losses could

not be entirely attributed to the desired loss of water during aromatization.

It appeared from these results that the neat resins decompose after relatively

short exposure times at 589 0 K (6000 F) in air. From the results of this experi-

mientation and results obtained on Contract NAS3-15834 a postcure time of

four to six hours at 5890K (600
0F) was selected for subsequent postcure of

neat resin and composite samples during the remainder of the program.

2.2.3 Crosslinked PDA Resin

Experimental studies on the resin modification were focused on

developing improved PDA resins. The objective of this work was to

introduce thermally stable crosslinks into the PDA resin matrix to

improve its thermo-oxidative and mechanical property characteristics.

The method selected was to introduce unsaturation into the linear PDA resin

14
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TABLE III

RESULTS OF POSTCURE STUDIES ON BFBI/BMPM MIXTUREa

Postcure b Weight Loss During Temperature of Initial
Duration, hr. Postcure (% w/w) Weight Loss in TGA

Postcured Resin (oK/oF)c

1 1.04 623/662

2 1.33 623/662

4 1.56 623/662

8 1.92 633/680

18 2.55 633/680

24 4.42 598/617

48 7.00 585/592

a. Employing a stoichiometric mixture of BFBI/BMPM ingredients cured
4 hours at 505 0 K (450 0F) and 1.4 MN/m 2 (200 psi).

b. Postcure cycle consisted of a 4 hour linear heat-up from 477 0K (4000F)
to 5890K (6000F) followed by heating at 589 0K (6000F) for stated time.

c. Scan rate 30K/min. and air flow 100 ml/min.

for subsequent use as a crosslinking site. The monomer selected

for introducing the desired unsaturation was bis(4-maleimidophenyl)

ethylene (BMPE) (for preparation see Appendix B.3). This maleimide was

primarily selected because it can be employed in the PDA reaction scheme

in the same fashion as BMPM. The monomer also has the added feature that

any desired level of crosslink can be obtained by simply substituting BMPE

for some of the BMPM and adding the appropriate amount of crosslinking

agent. The unsaturated ethylene group was expected to undergo a Diels-

Alder reaction with BFBI to give a benzene ring by eliminating water through

a typical PDA reaction. Thus, in this case, the BFBI serves as the chain

extender and also as the crosslinking agent.

0 0II II

C C

N CH=CH QN

C C
II II

O BMPE O
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Two different resin samples were prepared employing BMPE and the BFBI/

BMPM couple. The first sample was a linear PDA resin containing BMPE as

indicated by the following formulation BFBI/9OBMPM:O10BMPE. The second

sample was a linear PDA resin formulation containing BMPE to which additional
BFBI (crosslinking agent) was added (according to the following formulation

BFBI/9OBMPM:10BMPE + 5BFBI) to give a crosslinked resin. Both samples were
cured at 505 0K (450'F) for 4 hours and 1.4 MN/m 2 (200 psi). The resultant

cured samples then were subjected to thermogravimetric analysis. The

results of this work are shown in Table IV. The samples then were postcured
employing a 4-hour linear heat-up from 472 0 K to 589 0 K followed by heating

at 589 0K for 4 hours (these cure and postcure conditions were employed for
the neat PDA resin work on Contract NAS3-15834). The resin samples then
were isothermally aged at 533 0K (500'F) and 561 0K (550'F) for 300 hours

at the same time the BFBI/BMPM samples (prepared in Section 2.1.1) were

aged. The results of the aging are given in the next section.

TABLE IV
CHARACTERIZATION OF BMPE CONTAINING PDA RESINS

Temperature of Initialb
Polymer a Weight Loss in TGA

Formulation (OK/OF)

BFBI/9OBMPM:1OBMPE 623/662

BFBI/9OBMPM:1OBMPE + 623/662
5 BFBI 623/662

a. Cured at 5050K (4500F) for 4 hours and 1.4 MN/m 2 (200 psi).
b. Scan rate 30K/min. and air flow 100 ml/min.

2.2.4 Isothermal Aging of Neat Resins

The neat PDA resins cured at lower tempereratures and the BMPE contain-
ing resins were isothermally aged for 300 hours at 533 0K (5000F) and 5610K
(5500 F) in a forced-air oven. The samples were periodically weighed during
the aging and the results are presented in Table V and the 561 0K results
are shown graphically in Figure 2. No significant change in physical appear-
ance of the samples was noted after the 300-hour aging period.

16



TABLE V

ISOTHERMAL AGING OF NEAT PDA RESIN SAMfPLES

AT 533 0K AND 5610K

Cure Conditionsa Weight Percent Loss - Duration Points in Hours

Duration, hr Temperature 48 hr 97 hr 144 hr 234 br i 0n hr

Sample Composition (oK/oF) 533 0K 561 0K 5330K 561 0K 533 0 K 561 0 K 533 0K 561 0 K 533 0K 561 0K

BFRI/BMPM 4 450/350 b 1.02 0.43 1.49 0.74 1.83 1.07 2.64 1.24 2.97

BFBI/BMPM 4 464/375 b 1.06 0.60 1.67 0.88 2.08 1.17 3.08 1.36 3.45

BFBI/BMPM 4 474/400 b 1.22 0.69 1.78 0.98 2.30 1.34 3.52 1.55 4.00

BFBI/9nBMPM:10BMPE 4 505/450 b 1.19 0.50 1.61 0.77 2.01 1.05 2.79 1.27 3.15

BFBI/9OBMPM:10BMPE 4 505/450 b 1.16 0.54 1.58 0.80 2.03 1.16 2.81 1.32 3.12

+ 5BFBI

a. Postcure cycle consisted of 4 hour linear heat-up from 472
0K (4000F) to5890 K (6000 F) followed by

isothcrmal cycle at 589 0K for 4 hours.

b. Not determined C

0

I
I -

-CC)
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Figure 2. Isothermal Aging of Neat PDA Resin Samples
at 561 0K (5500F)
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The aging experiment demonstrated several significant factors concern-

ing the resin samples and the cure conditions used to prepare the samples.

General conclusions based on the results of the aging are as follows:

* All resins studied show promise for long-term use at 533 0K
(500'F) and 561 0 K (550°F)

* The PDA resins (BFBI/BMPM) cured at lower temperatures
(i.e., 4500 K and 464°K) displayed improved thermo-oxidative
stability over the PDA resin cured at 474°K (4000 F)

* The BFBI/BMPM resins containing BMPE cured at 505 0 K (4500 F)
showed thermo-oxidative stability comparable to neat resins
cured at 450 0 K (3500F).

A more detailed discussion of the results is presented in the para-

graphs that follow.

The data presented in Table V show that all samples exhibit outstand-

ing stability at 533 0 K during the aging period studied. Essentially no

difference in thermo-oxidative stability as measured by weight loss was

noted at 533 0K and the resins show promise for long-term use at this tempera-

ture. However, the aging data at 561 0K showed reasonable differences in

thermo-oxidative stability between the resin samples as discussed below.

It was interesting to note that the BFBI/BMPM sample cured at the

lowest temperature [4500K (350°F)] displayed the greatest thermal stability

of all the samples. As the cure temperature for this couple was increased,

the resulting polymer samples displayed a loss in thermo-oxidative stability.

The BMPE containing PDA resin displayed thermo-oxidative stability that was

nearly equivalent to that of the BFBI/BMPM resin sample cured at 4500K.

Essentially no difference in stability was noted for the two BMPE containing

resins. This result was somewhat surprising because one sample was formu-

lated to be a linear polymer and the other sample was formulated to give a cross-

linked system. However, because the BFBI crosslinking agent was present in the

linear formulation, there is high probability that some crosslink forma-

tion occurred in the resin matrix even though it was formulated to be linear.

Therefore, since both samples probably possessed a certain degree of cross-

link character, their thermo-oxidative stability appeared equivalent. Never-

theless, the BMPE containing resins did show high promise for use at 561 0K

based on the aging data and they were evaluated as possible resin can-

didates in Task II composite fabrication studies.
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2.2.5 Precure Study on BFBI/BMPM Resin

A investigation was conducted at the end of the Task I studies to ex-

amine the effects of temperature and time on the BFBI/BMPM system below

4500K (3500F) (the lowest effective cure temperature). This information

was sought to help in structuring the prepreg cycle and/or the autoclave

cure cycle for the BFBI/BMPM system.

The BFBI/BMPM mixture was heated in a forced-air oven at atmospheric

pressure for the time durations and temperatures given in Figure 3.

Staging Duration
Staging Temperature in Hours

oK (OF) 1 2 4 8 16

394 (250) X X

405 (270) X X

416 (290) X X

427 (310) X X

439 (330) X

Figure 3. Precure Matrix For BFBI/BMPM Mixture

Each sample obtained from this experimentation then was characterized as

follows:

* Percent (w/w) solubility in NMP

* Inherent viscosity

* Cure at 450 0K (3500 F) for two hours to measure flow and
consolidation properties of the resin.

The results obtained from this experimentation are given in Table VI.

The results indicated that a small increase in the inherent vis-
cosity of the BFBI/BMPM mixture was obtained as the temperature was

increased or as the time duration was increased at a given temperature.

In addition to molecular weight build-up, a crosslinking reaction appears

to become significant at 4270K (310 0 F). The resin samples obtained at

427 0K and 439 0K (3300F) were found to be partially soluble (ca. 90%
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dissolved) at 30% (w/w) in NMP indicating formation of a high molecular

weight and/or a crosslinked resin. Dilution to 5% (w/w) with additional

NMP failed to yield a solution and subsequent heating of the mixtures to

reflux for one hour also did not give a solution at 5% solids. These

results showed that in the neat resin system some crosslinking does take

place at temperatures as low as 4270 K. The crosslinking reaction may be

favored at these temperatures in the neat resin because full melt and flow

TABLE VI

SUMMARY OF PRECURED RESIN PROPERTIES

Precure Precure Weight Solubility Inherent
Temoerature Duration Loss in NMP at Viscosity

(K/ F) (Hours) (% w/w) 2930K (in NMP)

(% w/w) at 303 OK

394/250 8 0.40 >30 a

16 0.47 >30 0.04

405/270 4 0.46 >30 0.03

8 0.54 >30 0.04

416/290 2 0.55 >30 0.04

4 0.62 >30 0.05

427/310 1 0.58 b 0.05

2 0.64 b c

439/330 1 0.50 b c

a - Not determined.

b - Most of sample dissolved at 30% (w/w) solids;
insolubles still present when diluted to 1% w/w solids.

c - Not determined due to insolubles in solution.

does not occur to give a homogenous mixture thus resulting in local areas

of high concentration of bis(maleimide). Subsequent homopolymerization

of some of the bis(maleimide) (BMPM) would yield the observed insoluble

material. Somewhat different behavior is expected for this system when

solvent is employed as in composite fabrication because local areas of
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high concentration of bis(maleimide) are much less likely and it is postu-

lated that the Diels-Alder reaction would be more highly favored than the

homopolymerization reaction, thus resulting in the formation of high molec-

ular weight resins.

All of the precured samples displayed the desired melt and flow charac-

teristics upon cure at 4500 K (3500F) for a two-hour duration. The polymer

samples obtained were well consolidated plugs and appeared to be homogenous

in character. It was concluded from this study that temperatures up to

ca. 422 0 K (3000F) could safely be employed in prepreg processing or in the

autoclave precure cycle. This information was used in Task II studies

described in the next section.
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III. TASK II - COMPOSITE FABRICATION AND PRELIMINARY CHARACTERIZATION

The objective of this task was to develop and refine autoclave molding

processes for the poly(Diels-Alder)(PDA)type polyimide resin. It was demon-

strated during this task that the PDA derived polyimide resins could be

autoclave processed within the goal fabrication parameters of the program

[i.e., <505 0K (4500 F) cure temperature and <1.4 MN/m 2 (200 psi) cure pressure]

The processing procedures developed for the PDA resins provided good fiber

collimation and wetting utilizing Hercules A-S graphite fiber tows. During

this work, a tersolvent mixture was identified for use as the laminating

solvent. The solvent system was shown to expedite prepreg manufacture and

the resultant composites were found to possess very promising mechanical

properties. During work on this task, the non-destructive test (NDT) method

of ultrasonic "C"-scan was used as a test procedure to assess the quality of

composites produced. A detailed discussion of these activities is provided

below.

3.1 INITIAL COMPOSITE SCREENING STUDIES

.The initial composite fabrication studies were conducted to reproduce

preliminary data obtained in Contract NAS3-15834 on prepregs prepared from

type A-S fiber and the BFBI/BMPM resin employing DMF as the laminating

solvent. Experimental studies then were conducted using NMP as the laminat-

.ing solvent in place of DMF. Finally, the new BMPE containing PDA resin

was evaluated as a resin matrix for graphite reinforced composites. During

much of this work, ultrasonic "C"-scan was used as a test method to assess

the quality of the composites prepared by conventional molding procedures

(i.e., 0.7 MN/m 2 positive pressure and vacuum bag lay-up).

3.1.1 Initial Prepreg Manufacture

Prepreg tapes were prepared by drum winding at 8 tows per inch, Hercules

A-S continuous graphite fiber impregnated with BFBA/BMPM amide acid solutions

(BFBA is used when the amide acid of BFBI is employed). The fiber impregna-

tion was performed in a resin bath containing 26-30% w/w resin solids solu-

tions of the amide acid BFBA/BMPM mixture in either DIF or NMP. The tapes
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then were air-dried for 1-6 days at room temperature, removed from the

drum winder and subjected to additional "B"-stage cycles. The physical

properties of tapes were determined using procedures described in

Appendix D.

3.1.2 Initial Composite Fabrication

Composites were molded from the resultant graphite tape by first

vacuum bagging the stacked prepreg [9 plies 7.6 cm by 10.2 cm (3-inch by

4-inch)] and then autoclave molding using various curing cycles in conjunc-

tion with positive pressure (see Figure 4 for schematic of vacuum bag lap-

up). Three panels were fabricated using BFBA/BMPM resin and DMF as the

solvent and then subjected to "C"-scan NDT testing to determine whether

this process would yield the panel quality desired (i.e., <2% voids) prior

to physical and/or mechanical testing. Initial "C"-scan studies (see

Section 3.1.5) indicated that these composites possessed voids and in order

to determine the quality of composites quantitatively, one panel was machined

and tested (see Table VII). As the results clearly show, this panel con-

tained a relatively high void content (i.e., ca. 4.0% v/v) which also was

confirmed by photomicrographic inspection of a cross-section of the panel.

At this early stage in the Task II studies, it was mutually agreed between

TRW and the NASA Program Manager that the use of DMF as the laminating

solvent should be discontinued because of its possible deleterious effects

on mechanical properties of the composites. Consequently, N-methylpyrroli-

dinone (NMP) was evaluated as a laminating solvent as discussed below.

3.1.3 Evaluation of NMP as the Laminating Solvent

Graphite tape was manufactured using NMP resin solutions in an analogous

fashion to the DMF resin solutions. The graphite was impregnated in a resin

bath containing 26-30% w/w of the BFBA/BMPM amide acid.

The resultant prepreg then was dried for 6 days on the winding drum.

The first four days of drying was at room temperature and the last two days

was under heat lamps [temperature approximately 322 0K (1300F) . This long

drying cycle on the drum was required in order to lower the solvent content

to a level where the prepreg tape could be handled. A solvent evolution

study then was conducted at 394 0K (2500 F) and 405 0K (270°F) for various

times. After removal of the test samples from the "B"-staging oven, volatile
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TABLE VII

PROPERTIES OF PRELIMINARY PANEL

EMPLOYING DMF AS THE LAMINATING SOLVENT

Property Value

Density, g/cc 1.55

Resin Content, % w/w 25.7

Fiber Volume, % v/v 65.3

Void Volume, % v/v 3.9

Short Beam Shear 51.3
Strength, MN/m2 (PSI) (7300)

matter content was determined by testing samples at 561 0K (5500F) for 30

minutes (see Table VIII). These data indicated that even at relatively

high temperatures for solvent evaporation, the amount of volatile matter

remaining was higher than desirable for subsequent processing operations.

TABLE VIII

SOLVENT REMOVAL STUDY USING NMP SOLVENT CONTAINING GRAPHITE TAPE

Testing Time Testing Temperature oK(oF)

(Hours) 394(250 405(270)
0 24.1 a 24.1

1/2 19.0 15.7

1 15.9 13.6

2 14.7 11.1

3 13.2 10.4

4 11.4 9.8

5 11.3 -

6 11.3 9.1

7 - 8.7

24 - 7.5

a - percent volatile matter w/w
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The prepregs prepared from the NMP resin varnish then were used for

composite fabrication studies. Various "B"-staging, process and postcure

cycles were screened by autoclave molding of panels. However, all of the

panels (with one exception) contained various quantities and sizes of

blisters and/or void areas. The one panel that looked acceptable by

visual inspection was tested for mechanical and physical properties (see

Table IX).

TABLE IX

PROPERTIES OF PANEL USING NMP AS THE LAMINATING SOLVENT

Property Value

Flexural Strength,MN/m 2 (KSI)

at R.T. 1860 (265)

at 561 0 K (550'F) 530 (76)
Short Beam Shear Strength
MN/m , (PSI) at 2950K 49.9 (7100)

Density, g/cc 1.54

Resin Content, % w/w 27.4

Void Volume, % v/v 4.0

Fiber Volume, % v/v 64

The low 561 0 K (5500 F) strength retention together with the severe

blistering of the panels, clearly indicated that residual NMP remained

in the resin matrix after the cure cycle. Based on these results it was

concluded that an alternative solvent or solvent mixture was required to

process the PDA derived resins. The successful development of a tersolvent

system for this resin system is described in Section 3.2.

3.1.4 Evaluation of BMPE Containing PDA Resin

The results obtained in Task I resin modification studies showed that

the BMPE containing PDA resin was a potential candidate to be evaluated as

a resin matrix in a graphite reinforced composite. To give a direct com-

parison of this new resin to the BFBI/BMPM resin, a BFBI/BMPM resin contain-

ing composite also was simultaneously prepared. For this screening study,
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DMF was used as the laminating solvent to prepare the prepregs because
NMP was found to be unacceptable as was discussed above.

Graphite tapes were manufactured using BFBI/BMPM and BFBI/90 BMPM:
10 BMPE amide acid by the procedure described in Section 3.1.1. The com-
posites were fabricated, cured and postcured as reported in Section 3.1.2.
The physical and mechanical properties of the tapes and composites were
determined by procedures detailed in Appendix D. The results of this
study are given in Table X. It was obvious that the BMPE containing PDA
resin did not result in a significant increase in mechanical properties
of the composite. Consequently, the approach was not pursued further.

3.1.5 Initial Evaluation of Ultrasonic "C" Scan Testing

The first tests of the "C"-scan technique were performed on the
three composite samples prepared in Section 3.1.2. The "C"-scans were
performed using Automation Industries Research System equipment employing
the pulse echo technique. The test conditions included 2.25 MHz, sending
crystal 0.23 cm SIL type, focus at reflector, 7.72 cm gate signal at
typically good areas, 0 to 2.54 cm gate signal at suspect areas.

The same series of panels also were tested at the TRW Equipment
Laboratories using the through transmittance technique. These tests were-
performed to compare the results of the pulse echo technique to the
through transmittance technique. The testing parameters of this techni-
que utilized a 10 MHz frequency, sending crystal 0.23 cm SIL type, receiving
crystal 1.27 cm SIZ type, 50% screen height.

The "C"-scans (pulse echo) of the three panels are shown in Figure
5. By physical measurement methods, it was determined that panel 58-1
possessed a 3.9% v/v void content. The panel also was subjected to
photomicrographic examination to confirm the presence of the void areas
as determined by the "C"-scan technique. The photomicrograph (Figure 6)
clearly shows void areas present in the composite.
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TABLE X.

SUMMARY OF RESULTS OF COMPARATIVE

STUDY OF BMPE CONTAINING LAMINATING RESIN

Panel Number and Prepreg Drying

Cycle Hr/°K (Hr/°F)

Properties 6 1a 62
1/338 (1/150) 1/338 (1/150)

16/416 (16/290) 16/383 (16/230)

Prepreg Properties

Volatiles Content, % w/w 2.9 -

Wet Resin Solids, % w/w 41.0 39.7

Dry Resin Solids, % w/w 37.4 32.8

Flexural Strength, MN/m 2 (KSI)

at 295 0 K (RT) 1850 (263) 1790 (255)

at 5610 K (5500 F) 1570 (224) 1640 (233)

Shear Strength, MN/m 2 (PSI)

at 295 0 K 49.4 42.9
(7020) (6100)

Physical Properties

Density, g/cc 1.56 1.55

Resin Content, % w/w 26.4 22.9

Void Content, % v/v 3.2 4.8

Fiber Volume, % v/v 65 68

a - Cure vacuum bag lay-up with heat up rate to 433 0 K (320 0F) of

2-40K/min (5-70F/min); hold 30 minutes then apply 0.7 MN/m
2

(100 psi) positive pressure and heat to 478 0K (400 0F) at 2-40 K/

min (5-70F/min) rate; hold 2 hours, then cool under vacuum

pressure to 294°K (700F). Postcure composite under caul plate

30 minutes at 478 0K (4000 F), 60 minutes at 505 0 K (4500 F),

533 0K (500 0F), 561 0 K (5500 F) and 4 hours 589 0K (6000 F).
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Polishing
Defects

Void Areas

Figure 6. Photomicrograph of Panel 58-1
(110 Magnification)

3.2 ALTERNATIVE LAMINATING SOLVENTS

The results obtained during composite fabrication using NMP as the

laminating solvent (see Section 3.1.2) indicated there were a number of

inherent problems with this solvent. Some of the problems encountered

with NMP were:

* Extended time required for solvent removal during prepreg

preparation

* High temperatures required in "B"-stage to remove solvent

* Loss of elevated temperature composite properties

With these obvious shortcomings of NMP, studies then were initiated to

find an alternative laminating solvent for the PDA resin. The results of

this investigation are presented in the following sections.

3.2.1 Initial Solvent Selection

A screening study of potential solvents was first conducted for both the

BFBA and BMPM components of the PDA monomer mixture. It was determined that

BFBA (BFBI amide acid) is very soluble (>50% w/w) in methanol. However, BMPM

is only sparingly soluble (<5% w/w) in this solvent. Thus the solvent screen-

ing study was concentrated on finding a suitable solvent for BMPM.
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The possible candidate solvents identified for BMPM included acetone,

chloroform, pyridine and butyrolactone. Of these solvents, acetone was

selected as being the best candidate. Various mixtures of methanol and

acetone then were prepared and the BFBA/BMPM resin was added to give a 30%

(w/w) solids mixture. However, none of the solvent combinations yielded

a homogenous solution. The insoluble portion in the mixtures was found to

be BMPM.

Upon the suggestion of the NASA Project Manager, dioxane then was evalu-

ated as a possible solvent. It was found that BMPM was sufficiently soluble

(>20% w/w) in this solvent to make it a good candidate. However, the BFBA

portion of the resin mixture was found to be insoluble in dioxane. Fortuitously,

by adding methanol to the dioxane/resin mixture a solution of 30% (w/w) solids

was obtained.

To reduce the amount of higher boiling dioxane to a minimum in the solvent

mixture, the possibility of adding acetone in its place was evaluated. A 30%

w/w solids varnish was obtained in a solvent mixture consisting of 2:2:1

(by weight) of methanol, acetone and dioxane, respectively. The test varnish

was found to have a shelf life of 2 days before precipitation of the resin

commenced. Increasing the dioxane component to give a 1:1:1 (by weight)

solvent mixture yielded a varnish with shelf life of greater than 4 weeks.

The 1:1:1 tersolvent system was then evaluated as a laminating solvent as

described in the following sections.

3.2.2 Evaluation of Methanol/Acetone/Dioxane as the Laminating Solvent

Graphite tape manufacture and subsequent composite fabrication using a

varnish of BFBA/BMPM in methanol/acetone/dioxane and A-S graphite then was

initiated using the same prepreging procedure as described in Section 3.1.1.

After only two hours of drying, the volatile content of the tape was in

the range of 18-20% w/w when determined by procedures described in

Appendix D. A graphite composite (panel number 93) then was fabricated

using procedures described in Section 3.1.4.

The physical and mechanical properties for this panel then were deter-

mined (Table XI). The results showed that the mechanical properties were com-

parable to those obtained for this system using DMF as the laminating solvent.

As a result, further studies were conducted employing the tersolvent approach

to optimize the processing conditions and properties of the resultant com-

posites. 3232
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TABLE XI.

SUMMARY RESULTS OF GRAPHITE COMPOSITES USING
METHANOL/ACETONE/DIOXANE AND ETHANOL/ACETONE/DIOXANE LAMINATING SOLVENTS

Panel Number and Prepreg Drying Cycle

Hr/°K (Hr/°F)

r93a  
94

a  95

Properties 1.5/338 (1.5/150) 1.0/338 (1.0/150)
2.0/394 (2.0/250) 3.0/394 (3.0/250)

Flexural Strength, MN/m
2 (KSI)

at 2950 K (RT) 1490 (212) 1580 (225) 1510(215)

at 561 0 K (550'F) - 1030(146) 980(140)

Shear Strength, MN/m 2  (PSI)

at 2950 K (RT) 54.8 (7800) .72.4 (10,300) 57.6 (8200)

Physical Properties

Density, g/cc 1.54 1.58 1.58

Resin Content, % w/w 28.5 29.7 25.3

Void Content, % v/v 3.7 <1 2.5

Fiber Volume, % v/v 62.3 63.1 66.9

a - Cure same as cure cycle described in note on Table X

The first study investigated the potential use of ethanol as the alcohol

portion of the tersolvent in place of methanol. Ethanol was selected for use

in an attempt to decrease the rate of solvent evaporation and to improve

prepreg handleability. The composite (panel 94) was fabricated using the same

procedure as was used for panel 93. During.prepreg manufacture, it was found

that the varnish possessed a very limited self-life (ca. 1 hour). Consequently

only one panel was prepared using the ethanol/acetone/dioxane mixture. The

physical and mechanical properties obtained for the panel are given in Table XI

The most significant results are the increased short beam shear strength

(72.4 MN/m 2) and the low void content. In an attempt to duplicate these

results using methanol as the alcohol portion of the tersolvent, additional

processing studies were performed as described below.

The graphite tape prepared from the BFBA/BMPM resin in the 1:1:1 methanol:

acetone:dioxane solvent system was used without a preliminary drying cycle-

to increase its handelability (i.e., good drape and tack). The autoclave
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cycle employed was the same as shown in Table X except for the following:

Only 50.8 kN/m 2 vacuum pressure was used during the 377 0K (2200F)

and 4330K (3200F) soak levels. After 433 0K (3300F) soak level,

94.8-98.2 kN/m 2 vacuum and 0.7 MN/m 2 (100 psi) positive pressure

was applied and the composite cured at 473 0K (3900F) for two hours

and then cooled to room temperature under vacuum pressure.

Physical and mechanical properties for the panel (panel 95) were determined

(see Table XI). As the results indicate, the process provided a promising

composite panel. The short beam shear was not as high as that obtained for

the ethanol system, but thevalue represented a significant improvement over

that observed for the DMF varnish.

Four additional panels were then prepared to study the effect of

different cure cycles. The processing conditions used to fabricate the

panels are given in Table XII. After the panels were removed from the

autoclave, weight measurements and "C"-scan NDT examinations were per-

formed on three of the panels.

The panels then were postcured in the same manner as for previous graphite

composites[i.e., 30 minutes at 478 0 K (4000 F), 60 minutes at 505 0K (4500 F),

533 0K (500 0 F), 561 0K (550 0F), and 4 hours at 5890K (6000F)]. The panel weight

losses were determined and additional "C"-scan NOT testing was performed. The

physical and mechanical properties of the panels also were determined. Dis-

cussion of the results obtained from this processing study is given below.

The data presented in Table XII clearly showed that the methanol/acetone/

dioxane solvent mixture provided composite panels possessing very promis-

ing properties. For example, panel 96-8 was found to have a R.T. short beam

shear strength of 78.0 MN/m 2 (11.1 ksi) and a R.T. flexural strength of 1980

MN/m 2 (281 ksi). These values were the highest observed to date for this

resin system. Because the vacuum was lost on panel 96-7, a full assessment

of the different processing conditions could not be made at the conclusion of

this study. However, a general set of processing conditions was formulated
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TABLE XII

INITIAL RESULTS OF CURE STAGING STUDY USING

METHANOL/ACETONE/DIOXANE AS RESIN SOLVENT

pnel Number and Composite Cure Cycle
Properties 96-5 96-6 ( )  96-7(2 96-8

A Stage Temp,oK(oF) 360(190) 400(260) 377(220) 360(190)

A Stage Time,Minutes 120 120 240 240

A Stage Vacuum,(mm Hg) 381 381 127 127

B Stage Temp,oK(OF) 438(330) 438(330) 438(330) 428(310)

B Stage Time, Minutes 30 30 30 60

B Stage Vacuum (mm Hg) 381 381 127 127

C Stage (3) (3) (3) (3)

Weight Loss During Post
Cure (% w/w) 2.1 2.8 1.9 1.9

Flexural Strength,MN/m 2 (KSI)

at 295 0K (RT) 1800(256) 1080(154) 1650(235) 1980(281)

at 561 0K (550 0F) 880(125) - - 1140(162)

Shear Strength, MN/m 2 (KSI)

at 295 0K (RT) 59.8(8.5) 58.3(8.3) - 78.0(11.1)

at 561 0K (5500F) 35.2(5.0) - - 35.2(5.0)

Density, g/cc 1.58 1.57 1.57 1.60

Resin Content, % w/w 24.9 30.5 23.9 23.4

Void Content, % v/v 2.8 2.7 3.2 1.6

Fiber Content, % v/v 67.4 62.0 67.9 69.6

(1) This panel blistered during postcure and only part of the panel was
available for testing.

(2) Lost vacuum during "C"-stage cure and only acceptable parts of panel
were tested.

k/2  0. Nr 2

(3) Full vacuum (i.e., 94.8-98.2 kN/m vacuum)and 0.7 MN/m 2 positive
pressure was applied and the part cured 120 minutes at 473 0K
(3900F).

(4) Results obtained on "Cal-Tester" apparatus, values
are average of five specimens.
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which included the following:

* A stage temperature, 360 0 K

* A stage time, 240 minutes

* B stage temperature 4380K

• B stage time, 60 minutes

* Cure temperature, 473 0K

The "C"-scan results on the cured and postcured panels were used to

determine the stage in the processing cycle that void formation occurred

(i.e., either during the cure cycle or postcure cycle). The scans obtained

for the cured panels (Figure 7) showed that the composites varied consider-

ably in the amount of suspect areas. It was also evident that for the

cured panels and postcured panels, the suspect areas were concentrated on

the edges of the panels. Comparison of "C"-scans (Figures 7 and 8) of the

cured and postcured panels clearly indicated that a considerable change

in the composites had occurred. In fact, the physical change was so sig-

nificant that new instrument settings were required to obtain the same

signal height ratio so that a direct comparison could be made between

the cured and postcured panels.

Three specimens from panel 96-5 were subjected to micrographic exam-

ination to confirm the "C"-scan results that the suspect area were indeed

void areas. The location of each specimen taken from panel 96-5 is given

in Figure 9. The photomicrographs (Figures 10 through 12) were taken

using polarized light to show the void areas more clearly. Based on the

results of the "C"-scan analysis mechanical tests and photomicrographs,

the following conclusions were drawn:

* Low void content composite panels can be obtained by
the selected autoclave molding process, however,

* Significant void formation occurs during the postcure
cycle evaluated during the reported screening studies.

The research efforts of Task II studies then were directed toward

defining a new postcure cycle for the composites as described below.
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Figure 10. Photomicrograph of Specimen 2 From
Panel 96-5. (11OX, Polarized Light)

Figure 11. Photomicrograph of Specimen 3 From
Panel 96-5. (11OX, Polarized Light)
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Figure 12. Photomicrograph of Specimen 4 From
Panel 96-5. (11OX, Polarized Light)

3.2.3 Preliminary Postcure Studies

As was discussed above, it was evident that void formation was occurr-

ing during the postcure cycle. Consequently, an investigation into post-

cure conditions was conducted. A BFBA/BMPM graphite composite was fabricated

using the following procedure:

The graphite prepreg was prepared from a BFBA/BMPM tersolvent varnish

and vacuum bagged and introduced into the autoclave. The initial

vacuum bag pressure was set at 50.8 kN/m 2 and the assembly was heated

to 3770 K (220'F) and held for 2 hours. The assembly then was heated

to 433 0 K (3200 F) and held for 30 minutes. Full vacuum bag pressure

(i.e., 94.8-98.2 kN/m 2) and 0.7 MN/m 2 cure pressure then were applied

4 and the assembly was heated to 473 0K (3900F) for two hours and then

cooled to room temperature under vacuum bag pressure. The postcure

cycle included 1 hour each at 478 0K (4000 F), 4900K (4250F), 505 0 K

(4500F),518 0K (475 0F), 533 0K (500 0F), 546 0K (5250F), then 16 hours at

561 0K (550 0F), and finally 4 hours at 589 0 K (600 0F).

The significant change in the postcure cycle was extending the time

at 550 0F. The resultant composite's mechanical and physical properties

then were determined and are reported in Table XIII. Along with the

physical and mechanical property determination, "C"-scan NDT testing (see

Figure 13) and micro inspection (see Figure 14) also were obtained. Spec-

imen location for the above testing is shown in Figure 15.
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The data obtained for this panel clearly indicated than an extended

postcure resulted in improved physical and mechanical properties. For

example, the void content was <2% v/v and the short beam shear value was

71.7 MN/m 2 at R.T. The "C"-scan indicated that even after postcure the

panel was defect free. Based on these results additional postcure studies

were performed in Task III studies.

It was concluded from the work that the BFBA/BMPM resin showed high

promise of producing outstanding reinforced composites when processed

using the tersolvent varnish and the extended postcure cycle. Additional

refinements in the processing cycle were examined in Task III studies.

TABLE XIII.

PROPERTIES OF COMPOSITE USING AN EXTENDED POSTCURE CYCLE
(PANEL 99-2)

Property Value

Composite Weight Loss

During Autoclave Cycle, % w/w 39.7
During Postcure Cycle, % w/w 1.4

Flexural Strength, MN/m 2 (KSI)(a)

at 295 K (RT) 2220 (314)
at 561 K (5500 F) 1603 (228)

Shear Strength, MN/m 2 (PSI)(a)

at 295 K (RT) 71.7 (10.2)
at 561 K (5500 F) 38.7 ( 5.5)

Physical Properties

Density, g/cc 1.58

Resin Content, % w/w 26.3

Void Volume, % v/v 1.9

Fiber Volume, % v/v 66.2

(a) Results obtained on "Cal-Tester" apparatus, values are

average of four specimens.

42



CR 134716
24675-6012-RU-00

9463-99-2B

Area to
Represent
Minimum
Attenuation

I

5.0 MHz
Back Reflection
Focus at Top of Part

Figure 13. C-scan of Panel 99-2

PA
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Specimen Numbers 1, 2 used for photomicrographs.

Specimen Numbers 3, 4, 5, 6, 7, 8, 9 used for specific gravity and
resin content.

Sample Density Resin Content Void Volume
(g/cc_-(%, w/w) (%, v/v)

3 1.62 25.5 < 1

4 1.61 25.2 < 1

5 1.54 29.4 2.5
6 1.53 32.3 3.1

7 1.59 26.4 2.4
8 1.57 26.1 1.4
9 1.57 28.4 1.8

Figure 15. Specimen Location on Panel 99-2.
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IV. TASK III - REPRODUCIBILITY STUDIES

The objective of this task was to investigate potential improvements

of the resin and process employing the new tersolvent so that reproducible

composite panels were produced. The criteria used to assess the repro-

ducibility were high mechanical properties and low (<2%) void contents.

It was shown in these studies that the postcure cycle and the purity of

the BMPM ingredient are critical to obtain reasonably reproducible com-

posites. Additionally, it was determined that some change of the BFBA/

BMPM varnish in the tersolvent does occur with time. The details of these

studies are presented in the following sections.

4.1 CURE AND POSTCURE STUDIES

Based on the results obtained at the end of Task II studies showing

that an extended postcure cycle produced lower void content panels, a

cure/postcure screening matrix was performed as part of Task III studies

in which the effect of duration of postcure at various temperatures 
was

investigated. The matrix investigated is shown in Figure 16. The

processing conditions of the graphite tape and composites were as de-

scribed in Section 3.2.3, except the dwell times used at 473 0K (390 0F)

are as depicted in Figure 16. After postcure, the panels were allowed to

cool to ambient conditions and visual examination of the composites

indicated a high degree of blistering had occurred. Physical and mechanical

properties could be obtained only on panel 100-1 and only final weight

loss values during postcure were determined for panels 100-2, 100-3 and

100-4 (see Table XIV). At this point, the blistering was attributed

to changes in the processing cycle. Therefore, another series of composites

was fabricated using the identical initial cycle described in Section 3.2.3

to assess panel to panel reproducibility, except that two of the cured

composites were postcured for 24 hours at 5890K (6000F) instead of the

previous 4 hours for comparative purposes. A few small blisters occurred

on one of the panels postcured 24 hours at 5890 K (600 0F), but the other two

appeared to be visually acceptable. Mechanical and physical properties

were determined and are presented in Table XV.

45



CR 134716
24675-6012-RU-00

Panel Initial Cure Timg Postcure Time Postcure Temp.
Number At lo730 K (3900F) Hours OK (OF)

_________________~~~o (lrs)________ _______

100-1 8 8 505 (450)
8 533 (500)

16 561 (550)
4 589 (600)

100-2 16 4 505 (450)
4 533 (500)

16 561 (550)
4 589 (600)

100-3 8 8 505 (450)
8 533 (500)

16 561 (550)
4 589 (600)

100-4 16 4 505 (450)
4 533 (500)

16 561 (550)
4 589 (600)

aDwell time.

Figure 16. Cure/Postcure Test Matrix

TABLE XIV.

PROPERTIES OF COMPOSITES FROM CURE/POSTCURE STUDY

Composite Panel Number
Property 100-1 100-2 100-3 100-4

Flexural Stress MN/m 2 (KSI) (a)

at 245 0K (RT) 2110 (284) (c) (c) (c)
at 5610 K (5500F) 1340 (190) (c) c) (c)

Shor Beam Shear Stress
MN/m (PSI)

at 2950K (RT) 60.1 (8.6) (c) (c) (c)
at 5610 K (5500F) 44.3 (6.3) (c) (c) (c)

Physical Properties

Composite Weight Loss, % w/w(b) 1.8 3.1 2.5 3.0

Density, g/cc 1.49 (c) (c) (c)

Resin Content, % w/w 22.5 (c) (c) (c)

Void Volume, % v/v 8.6 (c) (c) (c)

Fiber Volume, % v/v 56 (c) (c) (c)

(a) Results obtained on "Cal Tester" apparatus, values are averages
of five specimens.

(b) Weight loss of composite during postcure cycle.

(c) Panel not tested due to blistering on postcure.
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TABLE XV.

PROPERTIES OF GRAPHITE COMPOSITES

Composite Panel Number
Property 101-1 (c)  1n1-2 101-3(c)

Flexural Strength MN/m
2  (KSI) (a)

at 2950 K (RT) 1860 (265) 1800 (256) 1810 (258)
at 561 0K (550 0F) 1290 (184) 1300 (185) 1190 (169)

Shear Strength MN/m
2  (PSI) (a )

at 2950 K (RT) 63.3 (9.0) 76.6 (10.9) 81.5 (11.6)

at 561 0 K (550°F) 47.1 (6.7) 54.1 (7.7) 43.4 (6.2)

Physical Properties (b)

Composite Weight Loss, % w/w
(b)  3.6 3.6 3.2

Resin Content, % w/w 25.5 23.7 27.2

Void Volume, % v/v 7.1 7.0 2.8

Fiber Volume, % v/v 63.5 65.5 64.5

Density, g/cc 1.50 1.51 1.56

Postcure Time @ 5890 K (6000F)(b) 24 24 4

(a) Results obtained on "Cal-Tester" apparatus, values are

average of 4hree specimens.

(b) Weight loss of composite during postcure cycle.

(c) Panel possessed a few small blisters.

Inspection of the results presented in Table XV showed several

interesting trends when compared with the results of the first panel

prepared using the extended postcure cycle as presented in Table XIII.

* The flexural strengths of the triplicate panels are
lower, both at 295 0 K (R.T.) and 5610 K (5500 F).

* The shear strength retention at 561 0K is consistently
higher than that given in Table XIII.

* The composite weight losses on postcure and void
volumes are all higher than those given in Table
XIII.

These results all strongly indicated that the resin samples used in

the two composite fabrication attempts differed in some manner, because

all other process variables were fixed. This difference is particularly

evident in view of the greater than 100% increase in void volume and
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composite weight loss on postcure. Consequently, studies were conducted

to assess the effect of aging on the BFBA/BMPM varnish and to set quality

standards on the ingredients used in the varnish.

4.2 VARNISH STUDIES

It was evident from the results obtained above that the resin or

resin varnish used to prepare the above series of panels was the cause

of the reproducibility problems. As a result, the first study conducted

investigated the effect of aging on the varnish. Then a series of com-

posites was prepared using the aged varnish solutions. During these

composite fabrication studies, the source of the blistering problem was

discovered. The details are given below.

4.2.1 Varnish Aging Studies

Samples of a resin varnish (30% w/w solids in 1:1:1 by weight

methanol:acetone:dioxane) were prepared by the usual procedure and then

stored in sealed containers. Samples of each varnish then were tested

1000

800
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Flowtime

(Seconds)

400

200

| I I I I I

20 40 60 80 100 120

Time
(Hours)

Figure 17. Results of Varnish Aging Study
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periodically by measuring the flow times in an Ostwald viscometer. The

results obtained from this study are displayed graphically in Figure 17.

It was evident that a chemical or physical change did take place in the

varnish with time. As can be seen in Figure 17, the viscosity of the

varnish stabilized after -50 hours. Similar results were obtained using

a Brookfield viscometer later in the program. Consequently, it was con-

cluded that the PDA varnish should be aged for a minimum of 48 hours

before being used to prepare prepregs. An aged varnish was used to pre-

pare a composite as discussed in the next section.

4.2.2 Composite Studies With Aged Varnish

A varnish which had been aged for 48 hours was used to prepare graphite

prepreg in the usual fashion. A BFBA/BMPM graphite composite was fabricated

using the following processing cycle.

The graphite prepreg was vacuum bagged as previously described

and introduced into the autoclave. The initial vacuum bag

pressure was set at 50.8 kN/m 2 and the assembly was heated to

3770K (2200F) and held for 2 hours. The assembly then was heated

to 433 0K (3200F) and held for 30 minutes. Full vacuum bag pressure

(i.e., 94.8-98.2 kN/m 2) and 0.7 MN/m 2 cure pressure then were applied

and the assembly was heated to 473 0K (3900F) for two hours and

then cooled to room temperature under vacuum bag pressure.

The postcure cycle included 1 hour each of 478 0K (4000F),

490 0 K (425 0 F), 5050 K (450 0 F), 518 0K (475 0F), 533oK (5000F),

5460K (5250F), then 16 hours at 561 0K (550 0F).

It was found that the composite was badly blistered after the post-

cure cycle. The exact temperature at which the blistering occurred was

not determined in this run because the panel was not inspected after each

temperature increase. Consequently, another panel was prepared from a new

batch of resin so that the temperature at which the blistering occurred

could be determined. This time blistering was observed after the 490
0K

(4250F) treatment. It was very evident from these results that the observed

blistering and void formation was caused by an impurity in the resin itself.
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Consequently, infrared analysis of the monomers was conducted. It

was found that some amide-acid was present in the BMPM that had been used

to prepare the two panels discussed above. Analysis of other samples of

BMPM on hand also revealed trace amounts of amide-acid present. Therefore,

the BMPM monomer was purified further by recrystallization (twice from

methanol) until no amide-acid band was detected in the infrared spectrum.

The purified BMPM then was used to prepare a laminating varnish in

the usual fashion. However, during the 48-hour aging, a thick, sticky

precipitate formed. This material was identified as BMPM giving indication

that the purified BMPM was less soluble in the tersolvent than the impure

monomer used previously. As a result, the dioxane ratio was increased to

give a 4:3:3 (by weight) ratio of dioxane:acetone:methanol. The resulting

varnish was aged for thirty hours at which time it had turned slightly

cloudy. A composite was fabricated as described earlier and postcured

with the same cycle as above except that the panel was heated to 5890K

(6000F) for 4 hours. The resultant composite's mechanical and physical

properties were determined in the usual fashion and are reported in Table

XVI along with results from an acceptable panel (96-8) prepared early in

Task II.

A second panel (8-2) also was fabricated in the same manner and its

mechanical and physical properties were determined to be similar to those

of sample 8-1 presented. Because both panels displayed properties similar

to those obtained eariler in the program (see Table XVI), it was believed

that the resin reproducibility problem had been solved. As a result,

fabrication of large panels in Task IV studies was initiated. The panels

were used for the detailed testing.
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TABLE XVI.

COMPARISON OF PROPERTIES OF GRAPHITE COMPOSITES

Composite Panel Number

Property 8-1a 96-8a

Flexural Strength MN/m2 (Ksi)
a

at 2950K 1905 (271) 1980 (281)

at 550K 1230 (175) 1140 (162)

Shear Strength MN/m
2 (Ksi)

at 2950K 78.0 (11.1) 78.0 (11.1)

at 561 0 K 49.2 (7.0) 35.2 (5.0)

Physical Properties

Composite Weight Loss, % w/wb 2.6 1.9

Resin Content, % w/w 22.6 23.4

Void Volume, % v/v <1 1.6

Fiber Volume, % v/v 72 69.6

Density, g/cc 1.64 1.60

aResults obtained on "Cal-Tester" apparatus, values are average of

three specimens.

bweight loss during postcure cycle.
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V. TASK IV - DETAILED EVALUATION

Composite panels were autoclave molded containing PDA (BFBA/BMPM

in acetone/methanol/dioxane solution) with Hercules A-S graphite fiber

reinforcement using the procedures defined in Task III (see Section 4.2.2).

However, it should be noted that the processinq conditions of the PDA

were not optimized. This fact is readily apparent by the wide scatter

of flexural and shear properties of the composites (See Table XVII, panels

17 versus panels 20). Those panels possessing the higher mechanical

properties and lowest void contents were used in the 5610 K (550'F)

isothermal aging tests and the remaining panels used in the 533 0K (500 0F)

isothermal aging and water boil evaluations. Details of the work are

provided below.

5.1 TEST PROCEDURES

The PDA graphite composite panels were machined into flexural and

short beam shear test specimens. Dimensions of the flexural specimens

were 0.6 cm by 7.6 cm by 0.02 cm and the short beam shear specimens were

0.6 cm by 1.2 cm by 0.02 cm. Test specimens for isothermal aging evaluations

were weighed and placed on metal shelves in two air circulating ovens each

with an air velocity of 12.7 m/sec and an air change rate of 19.7 m3/sec.

Air temperature in the two ovens was stabilized at the aging temperature,

i.e.,5330 K (5000F) and 561 0 K (5500 F). Specimens were withdrawn from the

air circulating ovens after aging durations of 200, 400, 600 and 1000

hours and placed in adesiccator. Flexural and shear properties were

determined on as-molded, after 2 hours water boil and isothermally aged

specimens in accordance with the procedures defined in Appendix D.

Weight loss calculations were made on the isothermally aged specimens and

resin retention plots were made.

5.2 TEST RESULTS

Two separate sets of panels were used in the isothermal aging tests

and another panel was used in determing the strength retention after

specimens had been submerged in boiling water for two hours. The initial

mechanical and physical properties of the panels used in the isothermal

aging test are presented in Table XVII, the panel used in the water boil
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TABLE XVII

SUMMARY PROPERTIES OF GRAPHITE COMPOSITES USED FOR ISOTHERMAL AGING

Composite Physical Properties Composite Mechanical Properties0

Shortbeam
Flexural Shear

Specific Void Fiber Strength Strength Flexural

Resin Gravity Volume Volume MN/m
2  MN/m

2  Modulus Test Panel

Content g/cc % v/v % v/v (KSI) (KSI) GN/m 2  Temperature Number

% w/w (1) (2) (3) (4) (5) (MSI) OK (6)

28.3 1.67 >1 68.0 1819 (264) 102.0 (14.8) 123 (17.9) 295 17-1

23.1 1.66 >1 72.5 903 (131) 42.7 (6.2) 114 (16.6) 561 17-2

20.2 1.62 1.4 73.5 1764 (256) 67.5 (9.8) 120 (17.4) 20-1

24.0 1.56 3.8 67.4 1310 (190) 48.9 (7.1) 120 (17.4) 20-9

(1) Specific gravity determined with following formula:

Specimen Weight in Air

Specimen Weight in Air - Specimen Weight in H20

(2) Calculated from resin contents and measured specific gravity 
values

(3) Calculated from resin content value

(4) The test span was determined by multiplying the specimen thickness 
by 32

(5) The specimen length was six times specimen thickness 
and test span was four times specimen thickness

(6) The composite mechanical properties were determined by the use of specimens from both 
composites, whereas physical properties

were determined on each separate composite
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tests, Table XVIII, and the mechanical properties of the specimens after

isothermal aging, Table XIX. The initial properties of the unaged and two

hour water boil PDA/A-S graphite composite specimens were comparable

to the state-of-the-art polyimide resin systems, thus indicating that an

acceptable initial cure is obtained at 473 0 K (3900F). Also, the resin

degradation rate, as determined by weight retention after isothermal

aging, was equivalent to other polyimide resins, see Figures 18 and 19

Corresponding properties retention data also were obtained after

isothermal aging for 1000 hours at 5330K and 5610K (see Figures 20 through 23

These results were interpreted to mean that the PDA resin is suitable for

processing under mild conditions [i.e., 437 0K (3900F) cure temperature

and 0.7 MN/m2 (100 psig) molding pressure].

However, after 1000-hour aging duration at 5610 K, the PDA composites

demonstrated a significantly higher degradation rate than similar PDA

composites using HMS graphite previously studied (Reference 1 ). This

additional weight loss could most probably be attributed to both the

relatively low initial resin content of the composites and/or degration

of the A-S graphite fiber. Therefore, further experimental work is

necessary in order to:

* Optimize processing procedures so that precise resin content

control in the cured composite is achieved and

* Evaluate the PDA resin with more thermally stable graphite

fibers (e.g., HMS) so that a valid evaluation of the PDA resin's

high temperature (561 0K) performance can be assessed.
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TABLE XVIII

SUMMARY WATER BOIt TEST
I-s

Composite Physical Properties Composite Mechanical Properties

Shortbeam
Flexural Shear

Specific Void Fiber Strength Strength Flexural

Resin Gravity Volume Volume MN/m2  MN/m2  Modulus Test

Content g/cc % v/v % v/v (KSI) (KSI) GN/m 2  Temperature

% w/w (1) (2) (3) (4) (5) (MSI) OK

23.5 1.60 1.5 59.5 1426 (207) 64.1 (9.3) 117 (17.0) 295

992 (144) 40.7 (5.9) 121 (17.5) 561

1440 (209) 53.7 (7.8) 115 (16.7) 295(6)

950 (138) 39.3 (5.7) 113 (16.4) 561(6)

01

(1) Specific gravity determined with following formula:

Specimen Weight in Air

Specimen Weight in Air - Specimen Weight in H20

(2) Calculated from resin content and measured specific gravity values

(3) Calculated from resin content value

(4) The test span was determined by multiplying the specimen thickness by 32

(5) The specimen length was six times specimen thickness and test span was four times specimen thickness

(6) Specimens conditioned two hours boiling H20 prior to testing



TABLE XIX

ISOTHERMAL AGING PROPERTIES OF PDA/AS GRAPHITE COMPOSITES

Weight Loss, % w/w Mechanical Properties

Aging Aging Test S.B. Flexural Strength, Flexural Modulus, Short Beam Shear

Temperature, Time, Temperature, Shear Flexural 2 Strenqth,
OK Hours OK Specimen Specimen MN/m 2 (Ksi) GN/m (Msi) MN/m 2 ?Ksi)

533 0 295 - - 1764 (256) 120 (17.4) 67.5 (9.8)

533 1310 (190) 120 (17.4) 48.9 (7.1)

533 200 295 1.2 0.5 73.0 (10.6)

533 1412 (205) 121 (17.6) 60.0 (7.4)

533 400 295 1.3 0.8 57.2 (8.3)

533 1371 (199) 121 (17.6) 48.2 (7.0)

1 533 600 295 1.6 1.2 51.0 (7.4)

533 1137 (165) 119 (17.3) 51.0 (7.4)

533 1000 295 2.2 1.6 1440 (209) 109 (15.8) 51.0 (7.4)

533 1185 (172) 112 (16.2) 42.7 (6.2)

561 0 295 - - 1819 (264) 123 (17.9) 102 (14.8)

561 902 (131) 114 (16.6) 42.7 (6.2)

561 200 295 2.2 1.3 75.1 (10.9)

561 1261 (183) 122 (17.7) 53.1 (7.7) t

561 4rn 295 4.3 2.2 57.9 (8.4)

561 1282 (186) 121 (17.5) 50.3 (7.3)

561 600 295 6.9 3.0 43.4 (6.3)

561 1330 (193) 120 (17.4) 46.9 (6.8)
I

561 1000 295 12.3 6.9 49.6 (7.2)

561 .923 (134) 101 (14.6) 26.1 (3.8)
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VI. CONCLUSIONS AND RECOMMENDATIONS

Summarized below are the conclusions reached during this experimental

study to define addition-type polyimides suitable for preparation of high

performance composites by an autoclave process at temperatures <4770 K.

Based on the findings, recommendations are given for further material and

process improvement studies.

6.1 CONCLUSIONS

1. Polymer studies have shown that a poly(Diels-Alder)
approach employing monomeric ingredients is suitable for
autoclave composite fabrication at temperatures below 4770 K
(4000F).

2. A combination of bis(furfuryl) benzophenone tetracarboxylic
imide (BFBI) and bis(4-maleimidophenyl) methane (BMPM) as
prepared by poly(Diels-Alder) (PDA) methodology was iden-
ified as a most promising ingredient candidate for auto-
clave fabrication of high performance A-S reinforced com-
posites at goal process para eters of temperature = 4730 K
(390 0F); pressure = 0.7 MN/m4; duration = 2 hours.

3. A tersolvent combination of acetone: methanol: dioxane
was determined to be a vastly improved varnish solvent than
either dimethyl formamide (DMF) or N-methylpyrrolidinone (NMP).

4. A staged postcure cycle up to 5890 K (6000F) was shown to be
most effective for final staging of PDA resins to yield A-S
reinforced composites demonstrating high initial mechanical
properties.

5. A-S reinforced composites prepared by the resin/solvent/process
summarized in 2, 3 and 4 above, are suitable for long-term

(>11000 hours) use in air at 533 0 K (5000 F) to 561 0 K (550 0 F).

6.2 RECOMMENDATIONS FOR FURTHER STUDY

1. Variations in ingredient formulary should be investigated for
the PDA approach to optimize processability/property trade-
offs for 1) autoclave cure at 422 0 K (3000 F) to 4770K (4000F),
2) definition of zero defect parts and 3) upgrade the system
for long-term use at 589 0K (6000 F).

2. Postcure studies should be conducted on promising PDA derived
resins to render post-treatment to a minimum temperature/
time duration.

3. Additional tersolvent studies should be conducted to opti-
mize prepreg quality and shelf-stability.

65receding page blank
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VII. NEW TECHNOLOGY

This section provides discussions of a new solvent/process developed

during this program to prepare A-S-type modulus graphite reinforced

composites by autoclave processes which eliminates the requirement for

expensive and suspect hazardous solvents such as dimethyl formamide (DMF)

and yields higher mechanical properties. The concept believed to be of

sufficient novelty that a invention disclosure has been submitted to the

TRW Patent Office. This disclosure (designated TRW Document Numer 74-167)

is described below.

7.1 TERSOLVENT FOR PROCESSING THE PDA RESIN

A process for preparing graphite reinforced composites employing a PDA

monomeric composition of bis(4-maleimidophenyl) methane (BMPM) and bis(fur-

furyl) benzophenone tetracarboxylic imide (or preferrably the amide acid) was

developed in which the resin is prepared in a tersolvent for prepreg manu-

facture. The preferred process consists of impregnation of the fiber with

the resin at 26% w/w solids concentration in a tersolvent consisting of a

4:3:3 mixture by weight of dioxane:methanol:acetone. The tape is then dried

overnight at room temperature and the total volatile content of the tape is

then adjusted to 18-20% w/w. The prepreg then is cut to the desired length

and width dimensions and several plies are stacked to effect a proper thick-

ness. The prepreg then is bagged employing Kapton and introduced into an

autoclave. The lay-up is cured employing the following cycle. The initial

vacuum bag pressure is set at 50.8 KN/m 2 (15 in.) and the assembly is heated

to 377 0K (220*F) for 2 hours. The assembly then is heated to 4330K (320*F)

and held for 30 minutes. Full vacuum pressure (i.e., 94.8 - 98.2 KN/m 2)

and 0.7 MN/m 2 cure pressure then are applied and the assembly is heated to

4730K (390 0K) for 2 hours and is then cooled to room temperature under

vacuum bag pressure. The composite is postcured by a cycle that includes

1 hour each at 478 0K (4000 F), 490 0K (4250F), 505 0K (4500 F), 518 0K (4750F),

533 0K (500 0F), 546 0K (525 0F), then 16 hours at 561 0K (5500F), and finally

4 hours at 589 0K (6000F).

The finished composite prepared by this total process possesses an

excellent combination of properties [e.g., <2% voids, 1905 MN/m 2 (271 Ksi)

flexural strength and 78.0 MN/m 2 (11.1 Ksi) short beam shear strength]. The

composite products are suitable for long-term use in air at 533
0K to 561 0K

(500 0 F to 550 0F). 67
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APPENDIX A

SYNTHESIS AND CHARACTERIZATION OF MODEL COMPOUNDS

The model compound utilized in Task I studies to investigate the

in situ aromatization reaction was prepared and characterized as described

below.

A.1 MODEL COMPOUND SYNTHESIS

A.1.1 Synthesis of N-Phenyl Maleimide (I)

To a solution of 392.2 g (4.0 mole) of maleic anhydride in 1000 ml of

dimethyl formamide was slowly added 372.5 g (4.0 mole)of aniline at such

a rate as to maintain the temperature below 323 0K while cooling the reaction

with an ice-bath. After the addition was complete, 36.8 g (0.4 mole) of

anhydrous sodium acetate and 448.8 g (4.4 mole) of acetic anhydride were

added. The mixture was then stirred for three hours at 323
0 K, allowed to

cool and then poured into 6000 ml of water. The crude product was air

dried and then recrystallized from methanol to give 690 g (80%) of the de-

sired N-phenyl maleimide; mp 363-3650 K (90-920C).

A.1.2 Preparation of N-Furfuryl Phthalimide (II)

To a 1-z. flask equipped with a stirrer, Dean-Stark trap and condenser

dere added 148.1 g (1 mole of phthalic anhydride and 600 ml of toluene.

The mixture was heated to near reflux during which time most of the anhy-

dride went into solution. To this solution was added dropwise 97.1 g (1

mole) of furfuryl amine and the mixture was then refluxed for 40 hours.

At the end of this period the mixture was treated with carbon, filtered

and allowed to cool. The resulting light tan precipitate was collected

by filtration, washed with a little toluene and air dried. The crude

imide was recrystallized from ethanol to give 174 g (77%) imide as a color-

less solid; mp 390-391 0 K (117-1180 C). The infrared spectrum contains two

carbonyl bands at 1710 and 1765 cm-1 (Figure A.1). The nmr spectrum

(Figure A.2) is consistent for the assigned structure and the band assign-

ment follows: The aromatic protons signal appears as a multiplet centered

at 2.32T and the protons on the furan ring exhibit two multiplets centered

at 2.72T and 3.73T. Upfield at 5.25T there is a singlet appropriate for

the methylene protons.

Preceding page blank
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Figure A.1. Infrared Spectrum of N-Furfuryl Phthalimide

Concentration: 3.1 mg/g KBr
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A.l.3 Preparation of Oxygen Bridged Adduct (III)

This reaction was initially run in three different solvents. Ethanol

was found to be the best solvent and the procedure used to prepare a large

quantity of material is described below,

A mixture of 45.4 g (0.2 mole) of N-furfuryl phthalimide and 34.6 g

(0.2 mole) of N-phenyl maleimide in 1200 ml of ethanol was refluxed for

18 hours. At the end of the reflux period a significant amount of preci-

pitate was present. The mixture was cooled and the precipitate was then

collected by filtration and dried to yield 61.5 g (77%) of adduct; mp

440-4430 K (167-1700C). An analytical sample was recrystallized from

acetonitrile; mp 442-4440K (169-171°C). The infrared spectrum for this

compound is shown in Figure A.3. A physical blend of Compound I and Com-

pound II was prepared and an ir spectrum obtained. (Figure A.4.)

The nmr spectrum of the adduct, Figure A.5,is also consistent with the

assigned structure. The two sets of aromatic protons appear as multiplets

centered at 2.27T and 2.63T. The small sharp peak at 2.78T is attri-

buted to the chloroform in the solvent and the peak upfield at 3.
22T

appears to be appropriate for the vinyl protons on N-phenyl maleimide

indicating a small amount unreacted starting material present in the adduct.

The vinyl protons are again a multiplet at 3.50T and the allylic proton

signal appears at 4.73r. The protons at C-2 and C-3 on the oxynadic ring

appear as a multiplet 5.53T and the singlet for the methylene protons is

U:pfield at 6.90r.

A.l.4 Characterization of in situ Aromatization Samples

Shown in Figures A.6 through A.9 are the nmr spectra of the samples

obtained from the in situ aromatization study on Compound III. The results

obtained from this study were discussed in Section 2.1.2.
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APPENDIX B

SYNTHESIS AND CHARACTERIZATION OF MONOMERS

The synthesis procedures used to prepare the monomers used to prepare

the resins studied in this program are described below.

B.1 SYNTHESIS OF BIS(4-MALEIMIDOPHENYL) METHANE (BMPM)

To a solution of 158 g (0.8 mole) of methylenedianiline in 480 ml of

dimethyl formamide was added a solution of 157 g (1.6 moles) of maleic

anhydride in 240 ml of dimethyl formamide at such a rate as to keep the

temperatures below 343 0K (700C). After stirring the mixture for an addi-

tional 15 minutes, it was cooled to room temperature and 204 g (2 moles)

of acetic anhydride followed by 16 g (0.2 moles) of sodium acetate were

added. The resulting mixture was heated to 323
0K (50*C) and maintained

there for 3 hours. The crude product was precipitated by pouring the

reaction mixture into 4000 ml portions of water. The precipitate was

collected by filtration, washed twice with 4000 ml portions of water and

dried. Crystallization from methanol afforded 203 g (71%) of bisimide,

mp 429-4320 K (156-1590C). The infrared and nuclear magnetic resonance

spectra are presented in Figure B.1 and Figure B.2, respectively.

B.2 SYNTHESIS OF BIS(2-FURFURYL) BENZOPHENONE TETRACARBOXYLIC IMIDE (BFBI)

To a solution of 258 g (0.8 mole) of BTDA in 600 ml DMF was slowly

added 150 g (1.6 mole) of furfurylamine. The mixture was stirred an addi-

tional twenty minutes after the amine was added and then 1000 ml of xylene

was added. The mixture was refluxed for 12 hours during which time the

water of imidization was removed with a Dean-Stark trap. The reaction

mixture was allowed to cool and the resulting precipitate was collected

by filtration. Recrystallization of the filter cake from xylene afforded

261 g (68%) of bisimide; mp 506-508
0K (233-2350 C). The infrared and

nuclear magnetic resonance spectra are given in Figure B.3 and Figure B.4,

respectively.

B.3 PREPARATION OF BIS(4-MALEIMIDOPHENYL) ETHYLENE (BMPE)

To a stirred solution of 14.72 g (0.07 mole) of 4,4'-diaminostilbene

in 20 ml of DMF under a nitrogen atmosphere was added a solution of 13.72 g

(0.14 mole) of maleic anhydride in 50 ml of DMF over a 20 minute period.
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The mixture was stirred for an additional 30 minutes after the addition was

complete and then 17.85 g (0.175 mole) of acetic anhydride and 1.43 g

(0.0175 mole) of sodium acetate were added to the mixture. The reaction

mixture was heated at 323 0K for three hours and then allowed to cool. The

bismaleimide was precipitated by adding the DMF solution to 600 ml of water.

The crude product was collected by filtration, dried and then recrystallized

from a 1:1 (v/v) mixture of DMF and ethanol. The light yellow colored bis-

maleimide failed to melt below 573 0K and because of its low solubility in

common organic solvents nmr analysis was not performed. The infrared

spectrum for the compound is shown in Figure B.5 and is consistent for the

maleimide structure.
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APPENDIX C

PREPARATION OF PDA VARNISH

The procedure employed to prepare the PDA varnish in the tersolvent is

given below.

C.1 PREPARATION OF PDA VARNISH IN THE TERSOLVENT

To 83.77 g (0.26 mole) of benzophenone tetracarboxylic acid dianhydride

in 531 g of a solvent mixture containing 212 g dioxane (passed through a

column of alumina to remove peroxides) 159 g acetone and 159 g methanol was

added 50.5 g (0.52 mole) furfurylamine during a 30 minute period under a

nitrogen atmosphere while cooling the mixture with an ice bath. The result-

ing light brown solution was stirred for one hour and then 93.16 g (0.26 mole)

of bis(4-maleimidophenyl) methane (BMPM) was added. The mixture was stirred

for 2 hours before being used to prepare the graphite prepreg.

Preceding page blank
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APPENDIX D.

TEST PROCEDURES FOR CHARACTERIZATION
OF GRAPHITE TAPE AND COMPOSITES

D.1 GRAPHITE TAPE CHARACTERIZATION

D.l.l Volatile Matter

Volatile content of graphite prepreg was determined by thermally

treating a tarred sample for 30 minutes at 561 K (550 0 F). After cooling

to R. T., the specimen was reweighed and the volatile content was cal-

culated by the following formula:

Volatile Content = W - W
x lO0Wl

Where:

W = Weight Sample

W2 = Weight Sample After Heat Aging

3.1.2 Resin Content

Resin content was determined by soxhlet extraction using DMF as

the solvent. A weighed sample was placed in the soxhlet extraction

apparatus and the solvent was heated to reflux until the solvent sur-

rounding the extraction thimble became clear. The sample then was re-

weighed and the resin content was calculated by the following formula:

wr = W
wr 2- x 100

WI

Wdr =W 2 - VW2w - VW 2  Preceding page blank

Where:

Wr = Wet Resin Content

Wdr = Dry Resin Content

W1 = Weight Sample
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W2 = Weight Sample Lost

W3 = Weight Graphite in Sample

V = Volatile Matter Content of Graphite Tape, Fraction

D.2 COMPOSITE CHARACTERIZATION

D.2.1 Graphite Composite Resin Content

The resin was digested from the cured sample by pouring acid

(concentrated H2SO4 ) onto the sample in a glass beaker and then heating

the acid until it turned black. At this point, 30% hydrogen peroxide

solution was added dropwise to the acid until it turned clear again.

The acid was reheated for a minimum of one hour. During this period,

further drops of hydrogen peroxide solution were added to clear the

acid whenever the acid turned black. Upon completion of this cycle,

the acid was cooled to room temperature and an additional 2 ml of

hydrogen peroxide solution was added. The solution was heated again

until white fumes appeared after which it was cooled to room tempera-

ture. The acid was decanted from the filaments using a fritted glass

filter, washed first in distilled water and then in acetone, after

which the filaments were dried for 15 minutes in a 4500 K (350 0F) air

circulating oven. Resin solids contents were calculated:

Wr : (W1 - W2) x 100W1

Where:

Wr = Weight Content of Resin Solids, % w/w

W1 = Weight of Cured Composite Sample

W2 = Weight of Filaments after Acid Digestion of the

Resin Matrix

D.2.2 Density of Composites

Specific gravity of composites was determined by weighing

specimen in air and in water. Specific gravity was calculated by the
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formula:

Specific Gravity = WA
WA - x 100WA - WW

Where:

WA = Weight Sample in Air

WW = Weight Sample in Water

D.2.3 Composite Fiber Volume

Fiber volume percent of the composites was calculated by the

formula:
D

V = 100 (1-K) DC

Where:

V = Volume Percent Fiber, %

DC = Measured Density of Composite, g/cm

Df = Density of Fiber, g/cm3

K = Weight Fraction, Resin
3

The specific gravity of the Hercules A-S fiber is 1.76 g/cm

D.2.4 Composite Void Content

Void contents of the composites were calculated using the

formula:

Wr + Wf
Vv = 100 - DC D Df

Where:

V = Volume of Voids,% v/vv3
DC = Measured Density of Composite, g/cm

Dr = Density of Resin, g/cm 3

Df = Density of Fiber, g/cm

Wr = Weight Content of Resin, %

Wf = Weight Content of Fiber, %
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0.2.5 Shear Strength of Composites

The cured composites were machined into short beam shear specimens

0.63 cm wide x 6 times the specimen depth in length and tested in

flexure loading point using a 4:1 span to depth ratio. Loading rate

was 1.3 rmm/minute.

Shear strengths were calculated using the simple formula:

S0.75V
u tb

Where:

S= Ultimate Shear Strength, ,N/m2

V = Load at Failure, N

t = Specimen Thickness, mm

b = Specimen Width, mm

D.2.6 Flexural Properties of Composites

The cured composites were machined into flexural specimens 0.63 cm

wide by 10 cm long and tested in flexure at a single point loading at

mid-span point using a 32:1 span-to-depth ratio. Loading rate was

1.33 mm/minute.

Flexural strengths and moduli were calculated using the formulae:

F 3PL
u 2

2Bd

and
L3m

b 4bd

Where:

Fu = Stress in the Outer Fiber at Mid-span, HN/m 2

Eb = Modulus of Elasticity in Bending, GN/m 2

P = Load at Failure, N

L = Span, mm
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b = Width of Specimen, mm

d = Thickness of Specimen, mm

m = Slope of the Tangent to the Initial Straightline

Portion of the Load Deflection Curve, N/mm
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