168 research outputs found

    Ocean forcing of glacier retreat in the western Antarctic Peninsula

    Get PDF
    In recent decades, hundreds of glaciers draining the Antarctic Peninsula (63° to 70°S) have undergone systematic and progressive change. These changes are widely attributed to rapid increases in regional surface air temperature, but it is now clear that this cannot be the sole driver. Here, we identify a strong correspondence between mid-depth ocean temperatures and glacier-front changes along the ~1000-kilometer western coastline. In the south, glaciers that terminate in warm Circumpolar Deep Water have undergone considerable retreat, whereas those in the far northwest, which terminate in cooler waters, have not. Furthermore, a mid-ocean warming since the 1990s in the south is coincident with widespread acceleration of glacier retreat. We conclude that changes in ocean-induced melting are the primary cause of retreat for glaciers in this region

    Deformation and failure of the ice bridge on the Wilkins Ice Shelf, Antarctica

    Get PDF
    A narrow bridge of floating ice that connected the Wilkins Ice Shelf, Antarctica, to two confining islands eventually collapsed in early April 2009. In the month preceding the collapse, we observed deformation of the ice bridge by means of satellite imagery and from an in situ GPS station. TerraSAR-X images (acquired in stripmap mode) were used to compile a time series. The ice bridge bent most strongly in its narrowest part (westerly), while the northern end (near Charcot Island) shifted in a northeasterly direction. In the south, the ice bridge experienced compressive strain parallel to its long axis. GPS position data were acquired a little south of the narrowest part of the ice bridge from 19 January 2009. Analysis of these data showed both cyclic and monotonic components of motion. Meteorological data and re-analysis of the output of weather-prediction models indicated that easterly winds were responsible for the cyclic motion component. In particular, wind stress on the rough ice melange that occupied the area to the east exerted significant pressure on the ice bridge. The collapse of the ice bridge began with crack formation in the southern section parallel to the long axis of the ice bridge and led to shattering of the southern part. Ultimately, the narrowest part, only 900 m wide, ruptured. The formation of many small icebergs released energy of >125 × 106 J

    Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica

    Get PDF
    Subglacial water plays an important role in ice sheet dynamics and stability. Subglacial lakes are often located at the onset of ice streams and have been hypothesised to enhance ice flow downstream by lubricating the ice– bed interface. The most recent subglacial-lake inventory of Antarctica mapped nearly 400 lakes, of which ∼ 14 % are found in West Antarctica. Despite the potential importance of subglacial water for ice dynamics, there is a lack of detailed subglacial-water characterisation in West Antarctica. Using radio-echo sounding data, we analyse the ice–bed interface to detect subglacial lakes. We report 33 previously uncharted subglacial lakes and present a systematic analysis of their physical properties. This represents a ∼ 40 % increase in subglacial lakes in West Antarctica. Additionally, a new digital elevation model of basal topography of the Ellsworth Subglacial Highlands was built and used to create a hydropotential model to simulate the subglacial hydrological network. This allows us to characterise basal hydrology, determine subglacial water catchments and assess their connectivity. We show that the simulated subglacial hydrological catchments of the Rutford Ice Stream, Pine Island Glacier and Thwaites Glacier do not correspond to their ice surface catchments

    Augmented Reality in Astrophysics

    Full text link
    Augmented Reality consists of merging live images with virtual layers of information. The rapid growth in the popularity of smartphones and tablets over recent years has provided a large base of potential users of Augmented Reality technology, and virtual layers of information can now be attached to a wide variety of physical objects. In this article, we explore the potential of Augmented Reality for astrophysical research with two distinct experiments: (1) Augmented Posters and (2) Augmented Articles. We demonstrate that the emerging technology of Augmented Reality can already be used and implemented without expert knowledge using currently available apps. Our experiments highlight the potential of Augmented Reality to improve the communication of scientific results in the field of astrophysics. We also present feedback gathered from the Australian astrophysics community that reveals evidence of some interest in this technology by astronomers who experimented with Augmented Posters. In addition, we discuss possible future trends for Augmented Reality applications in astrophysics, and explore the current limitations associated with the technology. This Augmented Article, the first of its kind, is designed to allow the reader to directly experiment with this technology.Comment: 15 pages, 11 figures. Accepted for publication in Ap&SS. The final publication will be available at link.springer.co

    PSR J1119-6127 and the X-ray Emission from High Magnetic Field Radio Pulsars

    Get PDF
    The existence of radio pulsars having inferred magnetic elds in the magnetar regime suggests that possible transition objects could be found in the radio pulsar population. The discovery of such an object would contribute greatly to our understanding of neutron star physics. Here we report on unusual X-ray emission detected from the radio pulsar PSR J1119-6127 using XMM-Newton. The pulsar has a characteristic age of 1,700 yrs and inferred surface dipole magnetic eld strength of 4.1x10^13 G. In the 0.5-2.0 keV range, the emission shows a single, narrow pulse with an unusually high pulsed fraction of ~70%. No pulsations are detected in the 2.0-10.0 keV range, where we derive an upper limit at the 99% level for the pulsed fraction of 28%. The pulsed emission is well described by a thermal blackbody model with a high temperature of 2.4x10^6 K. While no unambiguous signature of magnetar-like emission has been found in high-magnetic-eld radio pulsars, the X-ray characteristics of PSR J1119-6127 require alternate models from those of conventional thermal emission from neutron stars. In addition, PSR J1119-6127 is now the radio pulsar with the smallest characteristic age from which thermal X-ray emission has been detected

    Delivering 21st century Antarctic and Southern Ocean science

    Get PDF
    The Antarctic Roadmap Challenges (ARC) project identified critical requirements to deliver high priority Antarctic research in the 21st century. The ARC project addressed the challenges of enabling technologies, facilitating access, providing logistics and infrastructure, and capitalizing on international co-operation. Technological requirements include: i) innovative automated in situ observing systems, sensors and interoperable platforms (including power demands), ii) realistic and holistic numerical models, iii) enhanced remote sensing and sensors, iv) expanded sample collection and retrieval technologies, and v) greater cyber-infrastructure to process ‘big data’ collection, transmission and analyses while promoting data accessibility. These technologies must be widely available, performance and reliability must be improved and technologies used elsewhere must be applied to the Antarctic. Considerable Antarctic research is field-based, making access to vital geographical targets essential. Future research will require continent- and ocean-wide environmentally responsible access to coastal and interior Antarctica and the Southern Ocean. Year-round access is indispensable. The cost of future Antarctic science is great but there are opportunities for all to participate commensurate with national resources, expertise and interests. The scope of future Antarctic research will necessitate enhanced and inventive interdisciplinary and international collaborations. The full promise of Antarctic science will only be realized if nations act together

    Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

    Get PDF
    We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved data-coverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10%. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets

    Heterogeneous melting near the Thwaites Glacier grounding line

    Get PDF
    Thwaites Glacier represents 15% of the ice discharge from the West Antarctic Ice Sheet and influences a wider catchment. Because it is grounded below sea level, Thwaites Glacier is thought to be susceptible to runaway retreat triggered at the grounding line (GL) at which the glacier reaches the ocean. Recent ice-flow acceleration2,8 and retreat of the ice front and GL indicate that ice loss will continue. The relative impacts of mechanisms underlying recent retreat are however uncertain. Here we show sustained GL retreat from at least 2011 to 2020 and resolve mechanisms of ice-shelf melt at the submetre scale. Our conclusions are based on observations of the Thwaites Eastern Ice Shelf (TEIS) from an underwater vehicle, extending from the GL to 3 km oceanward and from the ice–ocean interface to the sea floor. These observations show a rough ice base above a sea floor sloping upward towards the GL and an ocean cavity in which the warmest water exceeds 2 °C above freezing. Data closest to the ice base show that enhanced melting occurs along sloped surfaces that initiate near the GL and evolve into steep-sided terraces. This pronounced melting along steep ice faces, including in crevasses, produces stratification that suppresses melt along flat interfaces. These data imply that slope-dependent melting sculpts the ice base and acts as an important response to ocean warming

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF
    corecore