27 research outputs found

    An EEG-fMRI Study on the Termination of Generalized Spike-And-Wave Discharges in Absence Epilepsy

    Get PDF
    INTRODUCTION: Different studies have investigated by means of EEG-fMRI coregistration the brain networks related to generalized spike-and-wave discharges (GSWD) in patients with idiopathic generalized epilepsy (IGE). These studies revealed a widespread GSWD-related neural network that involves the thalamus and regions of the default mode network. In this study we investigated which brain regions are critically involved in the termination of absence seizures (AS) in a group of IGE patients. METHODS: Eighteen patients (6 male; mean age 25 years) with AS were included in the EEG-fMRI study. Functional data were acquired at 3T with continuous simultaneous video-EEG recording. Event-related analysis was performed with SPM8 software, using the following regressors: (1) GSWD onset and duration; (2) GSWD offset. Data were analyzed at single-subject and at group level with a second level random effect analysis. RESULTS: A mean of 17 events for patient was recorded (mean duration of 4.2 sec). Group-level analysis related to GSWD onset respect to rest confirmed previous findings revealing thalamic activation and a precuneus/posterior cingulate deactivation. At GSWD termination we observed a decrease in BOLD signal over the bilateral dorsolateral frontal cortex respect to the baseline (and respect to GSWD onset). The contrast GSWD offset versus onset showed a BOLD signal increase over the precuneus-posterior cingulate region bilaterally. Parametric correlations between electro-clinical variables and BOLD signal at GSWD offset did not reveal significant effects. CONCLUSION: The role of the decreased neural activity of lateral prefrontal cortex at GSWD termination deserve future investigations to ascertain if it has a role in promoting the discharge offset, as well as in the determination of the cognitive deficits often present in patients with AS. The increased BOLD signal at precuneal/posterior cingulate cortex might reflect the recovery of neural activity in regions that are "suspended" during spike and waves activity, as previously hypothesized

    The Brain Correlates of Laugh and Cataplexy in Childhood Narcolepsy

    Get PDF
    The brain suprapontine mechanisms associated with human cataplexy have not been clarified. Animal data suggest that the amygdala and the ventromedial prefrontal cortex are key regions in promoting emotion-induced cataplectic attacks. Twenty-one drug-naive children/adolescent (13 males, mean age 11 years) with recent onset of narcolepsy type 1 (NT1) were studied with fMRI while viewing funny videos using a "naturalistic" paradigm. fMRI data were acquired synchronously with EEG, mylohyoid muscle activity, and the video of the patient's face. Whole-brain hemodynamic correlates of (1) a sign of fun and amusement (laughter) and of (2) cataplexy were analyzed and compared. Correlations analyses between these contrasts and disease-related variables and behavioral findings were performed

    Centrotemporal spikes during NREM sleep: The promoting action of thalamus revealed by simultaneous EEG and fMRI coregistration

    Get PDF
    Benign childhood epilepsy with centrotemporal spikes (BECTS) has been investigated through EEG\u2013fMRI with the aim of localizing the generators of the epileptic activity, revealing, in most cases, the activation of the sensory\u2013motor cortex ipsilateral to the centrotemporal spikes (CTS). In this case report, we investigated the brain circuits hemodynamically involved by CTS recorded during wakefulness and sleep in one boy with CTS and a language disorder but without epilepsy. For this purpose, the patient underwent EEG\u2013fMRI coregistration. During the \u201cawake session\u201d, fMRI analysis of right-sided CTS showed increments of BOLD signal in the bilateral sensory\u2013motor cortex. During the \u201csleep session\u201d, BOLD increments related to right-sided CTS were observed in a widespread bilateral cortical\u2013subcortical network involving the thalamus, basal ganglia, sensory\u2013motor cortex, perisylvian cortex, and cerebellum. In this patient, who fulfilled neither the diagnostic criteria for BECTS nor that for electrical status epilepticus in sleep (ESES), the transition from wakefulness to sleep was related to the involvement of a widespread cortical\u2013subcortical network related to CTS. In particular, the involvement of a thalamic\u2013perisylvian neural network similar to the one previously observed in patients with ESES suggests a common sleep-related network dysfunction even in cases with milder phenotypes without seizures. This finding, if confirmed in a larger cohort of patients, could have relevant therapeutic implication

    giant aneurysm of circumflex coronary artery in asymptomatic patient

    Get PDF
    We report a case of a 74 years old woman presented to the hospital for fever and uncontrolled hypertension. We found, incidentally, a giant aneurysm of the circumflex coronary artery measuring 6.4 x 5.5 cm. We show suggestive CT scan images and multislice reconstructions and a review of the epidemiology, diagnosis and treatment of this condition

    Giant aneurysm of circumflex coronary artery in asymptomatic patient

    Get PDF
    We report a case of a 74-year-old woman who presented to the hospital for fever and uncontrolled hypertension. We found, incidentally, a giant aneurysm of the circumflex coronary artery measuring 6.4×5.5 cm. We show suggestive computed tomographic scan images, multi-slice reconstructions and a review of the epidemiology, diagnosis and treatment of this condition

    Mapping (and modeling) physiological movements during EEG-fMRI recordings: the added value of the video acquired simultaneously

    No full text
    Background: During resting-state EEG-fMRI studies in epilepsy, patients' spontaneous head-face movements occur frequently. We tested the usefulness of synchronous video recording to identify and model the fMRI changes associated with non-epileptic movements to improve sensitivity and specificity of fMRI maps related to interictal epileptiform discharges (IED). New methods: Categorization of different facial/cranial movements during EEG-fMRI was obtained for 38 patients [with benign epilepsy with centro-temporal spikes (BECTS, n = 16); with idiopathic generalized epilepsy (IGE, n = 17); focal symptomatic/cryptogenic epilepsy (n = 5)]. We compared at single subject-and at group-level the IED-related fMRI maps obtained with and without additional regressors related to spontaneous movements. As secondary aim, we considered facial movements as events of interest to test the usefulness of video information to obtain fMRI maps of the following face movements: swallowing, mouth-tongue movements, and blinking. Results: Video information substantially improved the identification and classification of the artifacts with respect to the EEG observation alone (mean gain of 28 events per exam). Comparison with existing method: Inclusion of physiological activities as additional regressors in the GLM model demonstrated an increased Z-score and number of voxels of the global maxima and/or new BOLD clusters in around three quarters of the patients. Video-related fMRI maps for swallowing, mouth-tongue movements, and blinking were comparable to the ones obtained in previous task-based fMRI studies. Conclusions: Video acquisition during EEG-fMRI is a useful source of information. Modeling physiological movements in EEG-fMRI studies for epilepsy will lead to more informative IED-related fMRI maps in different epileptic conditions

    Low frequency mu-like activity characterizes cortical rhythms in epilepsy due to ring chromosome 20.

    No full text
    Objectives: To evaluate the spectral and spatial features of the cortical rhythms in patients affected by ring chromosome 20 - [r(20)]-syndrome. Methods: Twelve patients with [r(20)] syndrome were studied. As controls we enrolled 12 patients with idiopathic generalized epilepsy (IGE) and 12 healthy volunteers (HV). Blind source separation, spectral analyses and source reconstruction were applied in all cases in order to identify reliable spatio-temporal patterns of cortical activity. Results: A theta-delta EEG rhythm was identified in [r(20)] patients, with spectral peak ranging between 3 and 7 Hz and whose generators mapped over the sensory-motor cortices. A second peak laying at a frequency about double with respect to the first one was present in 6 cases. Analogue methodological approach in HV and IGE groups failed to show similar findings. Conclusions: EEG of [r(20)] patients reveals the existence of a highly reproducible EEG pattern arising from the sensory-motor system. Significance: The recognition of this peculiar EEG pattern could help the diagnostic work-up. Additionally, our findings supports the existence of a parallelism between this EEG trait and the physiological "mu" rhythm which is generate by the sensory-motor system. Such link suggests a sensory-motor system dysfunction in [r(20)] patients. (C) 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved
    corecore