17 research outputs found

    <span style="font-size:11.0pt;mso-bidi-font-size: 10.0pt;font-family:"Times New Roman";mso-fareast-font-family:"Times New Roman"; mso-bidi-font-family:"Times New Roman";mso-ansi-language:EN-GB;mso-fareast-language: EN-US;mso-bidi-language:AR-SA" lang="EN-GB">Addition of citral controls ROS and reduces toxicity in 5-fluorouracil treated <i>Schizosaccharomyces pombe</i> cells</span>

    No full text
    152-157In systemic therapy, chemotherapeutic drugs, often, cause considerable side effects; and combination of natural compounds lessen the extent of such effects. In the present study, combined effect of citral and 5-fluorouracil was studied in Schizosaccharomyces pombe cells. The antagonistic combination index found was at 0.01 and 0.025 mM of citral with 40 µg or higher concentration of 5-fluorouracil. The combined treatment was so effective that higher number of cells underwent apoptosis compared to individual treatment of 5-fluorouracil. Citral controlled ROS levels and increased survival of normal cells. Several differentially expressed proteins observed in the citral treatment could further help understanding its mechanism of action

    Induction of systemic resistance in different varieties of <i style="">Solanum tuberosum </i>by pure and crude elicitor treatment

    No full text
    151-162A 10 kD elicitor protein (infestin) produced by Phytopthora infestans was purified and its efficacy for induction of systemic resistance in resistant and susceptible varieties of Solanum tuberosum was studied. Culture filtrates from P. infestans with and without purified elicitor (infestin) were used as elicitors to understand the effect of purified elicitor (infestin) on development of systemic resistance. Culture filtrate and purified elicitor (infestin) were found to induce hypersensitive reaction on the leaves of resistant varieties, but not on susceptible varieties after 48 h. Culture filtrate devoid of purified elicitor (infestin) did not induce any necrotic spots even on resistant variety. Purified elicitor (infestin) was found to induce glucose oxidase, NADPH oxidase, superoxide dismutase, glutathione reductase, catalase and peroxidase enzymes in resistant S. tuberosum plants, however the induction of these enzymes was low in susceptible varieties. The oxidative enzymes were found to induce earlier than antioxidative enzymes and there was negative correlation between these two groups of enzymes. Levels of salicylic acid, phenylalanine ammonia lyase (PAL), -1, 3 glucanase and chitinase activities were also found higher in resistant than in susceptible varieties. It was observed that purified elicitor (infestin) was superior to crude culture filtrate, but was not capable of inducing systemic resistance in susceptible varieties

    Culture filtrate of <i>Lasiodiplodia theobromae </i>restricts the development of natural resistance in <i>Brassica nigra </i>plants

    No full text
    111-114Culture filtrate of Lasiodiplodia theobromae increased respiration rate, phenylalanine ammonia lyase activity, and levels of hydrogen peroxide, lipid peroxides and salicylic acid in B. nigra plants. Salicylic acid (SA) level increased for 1 hr of interaction and reduced later. Development of systemic acquired resistance (SAR) was found restricted in plants infected with L. theobromae due to deficiency of SA, which is a major signal for development of SAR. Exogenously supplied SA did develop resistance and plant death was delayed. It was hypothesized that deficiency of SA could be due to jasmonic acid produced by fungus that inhibits SA biosynthesis

    Enhancement of storability and quality maintenance of carambola (

    No full text
     Introduction. Our investigation aimed to examine the influence of eco-friendly edible coatings composed of sodium alginate, olive oil and green tea extract (GTE) on improving the shelf life and nutritional quality of carambola (A. carambola L.). Materials and methods. The combinations and concentrations of composite coatings tested were (2% sodium alginate + 0.1% olive oil) (T1), (2% sodium alginate + 0.2% olive oil) (T2) and (2% sodium alginate + 0.1% olive oil + 0.25% GTE) (T3), while the untreated fruit served as control (T4) and were stored at (25 ± 5) °C and (65 ± 5)% RH. All the stored fruit were subjected to physico-chemical and biochemical analysis at regular intervals of 4 days up to 16 days of their storage period. Results and discussion. Weight loss and decay occurrence were least in the fruit treated with T1 and T2 as compared with those of T3 and uncoated fruit (T4). The contents of total soluble solids, total sugars and changes in pigments were found to be least in fruit treated with T1 followed by those treated with T2 and T3. The addition of GTE (T3) to treated fruit during the storage helped enhance the antioxidants such as total phenols and ascorbic acid. Conclusion. The composite edible coatings tested in our study enhanced the shelf life of coated carambola fruit, i.e., thirteen days for T1, sixteen days for T2, fourteen days for T3 and twelve days for control or untreated fruit (T4); the nutritional quality of carambola was enhanced with the treatment of edible coating containing GTE

    Apoptosis induction capability of silver nanoparticles capped with Acorus calamus L. and Dalbergia sissoo Roxb. Ex DC. against lung carcinoma cells

    No full text
    Silver nanoparticles (AgNPs) were prepared using a one-step reduction of silver nitrate (AgNO3) with sodium borohydride (NaBH4) in the presence of polyvinylpyrrolidone (PVP) as a capping agent. Plant extracts from D. sissoo (DS) and A. calamus L. (AC) leaves were incorporated during the synthesis process. The crystalline nature of the AgNPs was confirmed through X-ray diffraction (XRD), confirming the face-centered cubic structure, with a lattice constant of 4.08 Å and a crystallite size of 18 nm. Field Emission Gun Transmission Electron Microscopy (FEG-TEM) revealed spherical AgNPs (10–20 nm) with evident PVP adsorption, leading to size changes and agglomeration. UV–Vis spectra showed a surface plasmon resonance (SPR) band at 417 nm for AgNPs and a redshift to 420 nm for PVP-coated AgNPs, indicating successful synthesis. Fourier Transform Infrared Spectroscopy (FTIR) identified functional groups and drug-loaded samples exhibited characteristic peaks, confirming effective drug loading. The anti-cancer potential of synthesized NPs was assessed by MTT assay in human adenocarcinoma lung cancer (A549) and lung normal cells (WI-38) cells. IC50 values for all three NPs (AgPVP NPs, DS@AgPVP NPs, and AC@AgPVP NPs) were 41.60 ± 2.35, 14.25 ± 1.85, and 21.75 ± 0.498 μg/ml on A549 cells, and 420.69 ± 2.87, 408.20 ± 3.41, and 391.80 ± 1.55 μg/ml respectively. Furthermore, the NPs generated Reactive Oxygen Species (ROS) and altered the mitochondrial membrane potential (MMP). Differential staining techniques were used to investigate the apoptosis-inducing properties of the three synthesized NPs. The colony formation assay indicated that nanoparticle therapy prevented cancer cell invasion. Finally, Real-Time PCR (RT-PCR) analysis predicted the expression pattern of many apoptosis-related genes (Caspase 3, 9, and 8)

    Maslinic Acid Inhibits Proliferation of Renal Cell Carcinoma Cell Lines and Suppresses Angiogenesis of Endothelial Cells

    Get PDF
    Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC) remains a treatment-resistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1), endothelial cells (human umbilical vein endothelial cell line [HUVEC]), and primary cultures of kidney proximal tubular epithelial cells (PTEC) were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid-rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy

    Chemical elicitors improve the shelf life of phalsa (

    No full text
    Introduction. Phalsa (Grewia asiatica L.) fruit has limited marketability due to its high degree of perishability, which leads to extensive postharvest losses. In view of the short postharvest shelf life and perishable nature of the fruit, this study aimed to determine the efficacy of salicylic acid (SA) or sodium benzoate (SB) alone or in combination with calcium chloride (CaCl2) treatments for improving the shelf life and quality of phalsa fruit. Materials and methods. Phalsa fruits dipped for 15 min in solutions of T1 = SA 2 mM, T2 = SA 2 mM + CaCl2 1%, T3 = SB 0.1% and T4 = SB 0.1% + CaCl2 1% were stored at two different temperatures, low temperature (10 ± 1°C) and room temperature (25 ± 1°C), while the untreated fruit served as control.Results and discussion. The treatments of 0.1% sodium benzoate (T3) and salicylic acid 2 mM + calcium chloride 1% (T2) were found to be effective in enhancing antioxidants and bioactive compounds such as ascorbic acid, total anthocyanins, etc. These treatments also increased total phenolics inhibited polyphenol oxidase activity and reduced the microbial load in phalsa fruit stored at low as well as room temperature. Conclusion. The treatment of 0.1% sodium benzoate could increase the shelf life of phalsa fruit to 14 days in low temperature storage conditions as compared with only 7 days in the control
    corecore