16 research outputs found

    Synthese und Funktionelle Materialeigenschaften 2D-Angeordneter SiC- und SiCN-Nanostrukturen

    Get PDF
    Die Herstellung quasi-eindimensionaler nichtoxidischer Siliciumkeramiken stellt eine große Herausforderung dar und konnte lediglich fĂŒr Siliciumcarbid realisiert werden. Quasi-eindimensionale Siliciumcarbid-Nanostrukturen werden durch optimierte klassische Syntheseverfahren des Siliciumcarbids hergestellt, sind einkristallin und ihre AspektverhĂ€ltnisse sowie Orientierung lassen sich wĂ€hrend der Synthese nur schwer kontrollieren. Die vorliegende Arbeit erweitert das Spektrum der nichtoxidischen quasi-eindimensionalen Silicium- keramiken bezĂŒglich der Geometrie und der chemischen Zusammensetzung im Si/C/N-System. Die Entwicklung eines geeigneten Templat-Verfahrens ermöglicht zum ersten Mal die Nanostrukturierung der polymerabgeleiteten Keramiken durch ihre Infiltration in nanoporöse Template mit zylindrischen Poren. Die thermisch induzierte Keramisierung des Infiltrats mit anschließender Templat-Entfernung fĂŒhrt zur Herstellung keramischen Nanostrukturen mit maßgeschneiderter Geometrie und chemischer Zusammensetzung. Voruntersuchungen basierend auf kommerziell erhĂ€ltliche Aluminiumoxid-Membranen beweisen eine erhöhte chemische Wechselwirkung zwischen Aluminiumoxid und Siliciumpolymeren. Diese Erkenntnis erklĂ€rt die begrenzten wissenschaftlichen Untersuchungen auf diesem Gebiet und lenkt das Ziel der Arbeit zur Entwicklung eines neuartigen nichtoxidischen und hochtemperaturstabilen Templats. Diese Herausforderung konnte durch erstmalige Umwandlung der Aluminiumoxid- in Aluminiumnitrid-Membranen ĂŒber Reaktivgassynthese unter Erhaltung der Porenstruktur gemeistert werden. Systematische Infiltrationsuntersuchungen werden mit chemisch inerten Aluminiumnitrid-Membranen durchgefĂŒhrt. Das entwickelte Templat-Verfahren erlaubt die FlĂŒssiginfiltration niedrigviskoser und die Vakuuminfiltration hochviskoser Siliciumpolymere sowie die in situ Sol-Gel-Infiltration des nichtoxidischen siliciumcarbodiimid-basierten Sol-Gel-Systems. Die keramische Ausbeute des prĂ€keramischen VorlĂ€ufers entscheidet ĂŒber die Entstehung von hohlen Nanoröhren bzw. massiven NanostĂ€ben. Die 2D-Anordnung der Nanostrukturen bleibt nach der Entfernung des Templats erhalten. Die quasi-eindimensionalen polymerabgeleiteten SiCN-Nanostrukturen sind röntgenamorph und weisen nach der Keramisierung eine identische chemische Zusammensetzung wie die entsprechenden SiCN-Bulk-Keramiken auf. Die Struktur/Eigenschaftsbeziehungen in diesem System kommen erst nach Behandlung der Nanostrukturen bei hohen Temperaturen zum Vorschein. Die Kristallisation der Nanostrukturen tritt unter Ausscheidung des kristallinen Siliciumnitrids ab 1400 °C ein. Zum ersten Mal werden polykristalline und kompositartige Si3N4/SiC/C-Nanostrukturen hergestellt. ZusĂ€tzlich zeigen die nanostrukturierten SiCN-Keramiken anders als die entsprechenden SiCN-Bulk-Keramiken nach isothermer Auslagerung bei 1400°C eine höhere ReaktivitĂ€t gegenĂŒber Stickstoff, wobei eine Stickstoff-Anreicherung festgestellt wird. AnsĂ€tze fĂŒr eine photolithographie-basierte Prozessierung und Anwendung der hergestellten 2D-angeordneten Nanostrukturen in mikroelektromechanische Systeme werden vorgestellt

    Improved Route to Linear Triblock Copolymers by Coupling with Glycidyl Ether-Activated Poly(ethylene oxide) Chains

    Get PDF
    Poly(ethylene oxide) block copolymers (PEOz_z BCP) have been demonstrated to exhibit remarkably high lithium ion (Li+^+) conductivity for Li+^+ batteries applications. For linear poly(isoprene)-b-poly(styrene)-b-poly(ethylene oxide) triblock copolymers (PIx_xPSy_yPEOz_z), a pronounced maximum ion conductivity was reported for short PEOz_z molecular weights around 2 kg mol−1^{−1}. To later enable a systematic exploration of the influence of the PIx_x and PSy_y block lengths and related morphologies on the ion conductivity, a synthetic method is needed where the short PEOz_z block length can be kept constant, while the PIx_x and PSy_y block lengths could be systematically and independently varied. Here, we introduce a glycidyl ether route that allows covalent attachment of pre-synthesized glycidyl-end functionalized PEOz_z chains to terminate PIx_xPSy_y BCPs. The attachment proceeds to full conversion in a simplified and reproducible one-pot polymerization such that PIx_xPSy_yPEOz_z with narrow chain length distribution and a fixed PEOz_z block length of z = 1.9 kg mol−1^{−1} and a Đ = 1.03 are obtained. The successful quantitative end group modification of the PEOz_z block was verified by nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). We demonstrate further that with a controlled casting process, ordered microphases with macroscopic long-range directional order can be fabricated, as demonstrated by small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It has already been shown in a patent, published by us, that BCPs from the synthesis method presented here exhibit comparable or even higher ionic conductivities than those previously published. Therefore, this PEOz_z BCP system is ideally suitable to relate BCP morphology, order and orientation to macroscopic Li+^+ conductivity in Li+^+ batteries

    Synthese und Funktionelle Materialeigenschaften 2D-Angeordneter SiC- und SiCN-Nanostrukturen

    No full text
    Die Herstellung quasi-eindimensionaler nichtoxidischer Siliciumkeramiken stellt eine große Herausforderung dar und konnte lediglich fĂŒr Siliciumcarbid realisiert werden. Quasi-eindimensionale Siliciumcarbid-Nanostrukturen werden durch optimierte klassische Syntheseverfahren des Siliciumcarbids hergestellt, sind einkristallin und ihre AspektverhĂ€ltnisse sowie Orientierung lassen sich wĂ€hrend der Synthese nur schwer kontrollieren. Die vorliegende Arbeit erweitert das Spektrum der nichtoxidischen quasi-eindimensionalen Silicium- keramiken bezĂŒglich der Geometrie und der chemischen Zusammensetzung im Si/C/N-System. Die Entwicklung eines geeigneten Templat-Verfahrens ermöglicht zum ersten Mal die Nanostrukturierung der polymerabgeleiteten Keramiken durch ihre Infiltration in nanoporöse Template mit zylindrischen Poren. Die thermisch induzierte Keramisierung des Infiltrats mit anschließender Templat-Entfernung fĂŒhrt zur Herstellung keramischen Nanostrukturen mit maßgeschneiderter Geometrie und chemischer Zusammensetzung. Voruntersuchungen basierend auf kommerziell erhĂ€ltliche Aluminiumoxid-Membranen beweisen eine erhöhte chemische Wechselwirkung zwischen Aluminiumoxid und Siliciumpolymeren. Diese Erkenntnis erklĂ€rt die begrenzten wissenschaftlichen Untersuchungen auf diesem Gebiet und lenkt das Ziel der Arbeit zur Entwicklung eines neuartigen nichtoxidischen und hochtemperaturstabilen Templats. Diese Herausforderung konnte durch erstmalige Umwandlung der Aluminiumoxid- in Aluminiumnitrid-Membranen ĂŒber Reaktivgassynthese unter Erhaltung der Porenstruktur gemeistert werden. Systematische Infiltrationsuntersuchungen werden mit chemisch inerten Aluminiumnitrid-Membranen durchgefĂŒhrt. Das entwickelte Templat-Verfahren erlaubt die FlĂŒssiginfiltration niedrigviskoser und die Vakuuminfiltration hochviskoser Siliciumpolymere sowie die in situ Sol-Gel-Infiltration des nichtoxidischen siliciumcarbodiimid-basierten Sol-Gel-Systems. Die keramische Ausbeute des prĂ€keramischen VorlĂ€ufers entscheidet ĂŒber die Entstehung von hohlen Nanoröhren bzw. massiven NanostĂ€ben. Die 2D-Anordnung der Nanostrukturen bleibt nach der Entfernung des Templats erhalten. Die quasi-eindimensionalen polymerabgeleiteten SiCN-Nanostrukturen sind röntgenamorph und weisen nach der Keramisierung eine identische chemische Zusammensetzung wie die entsprechenden SiCN-Bulk-Keramiken auf. Die Struktur/Eigenschaftsbeziehungen in diesem System kommen erst nach Behandlung der Nanostrukturen bei hohen Temperaturen zum Vorschein. Die Kristallisation der Nanostrukturen tritt unter Ausscheidung des kristallinen Siliciumnitrids ab 1400 °C ein. Zum ersten Mal werden polykristalline und kompositartige Si3N4/SiC/C-Nanostrukturen hergestellt. ZusĂ€tzlich zeigen die nanostrukturierten SiCN-Keramiken anders als die entsprechenden SiCN-Bulk-Keramiken nach isothermer Auslagerung bei 1400°C eine höhere ReaktivitĂ€t gegenĂŒber Stickstoff, wobei eine Stickstoff-Anreicherung festgestellt wird. AnsĂ€tze fĂŒr eine photolithographie-basierte Prozessierung und Anwendung der hergestellten 2D-angeordneten Nanostrukturen in mikroelektromechanische Systeme werden vorgestellt

    Synthesis and Comparative Investigation of Silicon Transition Metal Silicide Composite Anodes for Lithium Ion Batteries

    No full text
    A significant increase in energy density of lithium ion batteries (LIBs) can be achieved by using high‐capacity, silicon (Si)‐based negative electrode materials. Several challenges arise from the enormous volumetric changes of Si during lithiation/delithiation, such as disintegration/pulverization of the active material and the electrode as well as ongoing electrolyte decomposition, leading to rapid capacity fading. Here, we synthesize and comparatively investigate three different porous transition metal‐Si‐carbon composite materials that are composed of an active Si phase and the corresponding inactive metal‐silicide phases. In this material design, the inactive phases, as well as the pores serve as a buffer to attenuate the previously mentioned detrimental effects. The synthesized materials are studied with respect to their structural and surface properties and are characterized electrochemically regarding their rate performance, and long‐term charge/discharge cycling stability. Thereby, the composite materials show a promising rate capability and a high specific capacity. Their low initial Coulombic efficiency, due to the porous structure, can be partially compensated by pre‐lithiation. This is demonstrated by the application of the synthesized materials in a LIB full‐cell set‐up vs. NMC‐111 cathodes, where the amount of lithium is confined due to anode/cathode capacity balancing

    Toward High Power Batteries: Pre-lithiated Carbon Nanospheres as High Rate Anode Material for Lithium Ion Batteries

    No full text
    In this work, carbon nanospheres (CS) are prepared by hydrothermal synthesis using glucose as precursor, followed by a subsequent carbonization step. By variation of the synthesis parameters, CS particles with different particle sizes are obtained. With particular focus on the fast charging capability, the electrochemical performance of CS as anode material in lithium ion batteries (LIBs) is investigated, including the influence of particle size and carbonization temperature. It is shown that CS possess an extraordinary good long-term cycling stability and a very good rate capability (up to 20C charge/discharge rate) at operating temperatures of 20 and 0 °C compared to graphitic carbon and Li4Ti5O12 (LTO)-based anodes. One major disadvantage of CS is the very low first cycle Coulombic efficiency (Ceff) and the related high active lithium loss, which prevents usage of CS within LIB full cells. Nevertheless, in order to overcome this problem, we performed electrochemical pre-lithiation, which significantly improves the first cycle Ceff and enables usage of CS within LIB full cells (vs NMC-111), which is shown here for the first time. The improved rate capability of CS is also verified in electrochemically pre-lithiated NMC-based LIB full cells, in comparison to graphite and LTO anodes. Further, CS also display an improved specific energy (at ≄5C), energy efficiency (at ≄2C), and energy retention (at ≄2C) compared to graphite and LTO-based LIB full cells

    Finding the sweet spot: Li/Mn-rich cathode materials with fine-tuned core–shell particle design for high-energy lithium ion batteries

    No full text
    Among current cathode materials, particular attention to Li/Mn-rich layered transition-metal oxides (LMR-NCM) emerged, due to their high energy content accompanied by concurrently low raw material cost. However, until today the step toward a successful market implementation is still impeded by substantial capacity and voltage fade phenomena upon cycling. Herein, we demonstrate a comprehensive structural and morphological approach to increase the long-term stability behavior of LMR-NCM materials within a lithium ion cell. Therefore, a recently introduced core–shell particle design concept was applied, which involves a Co-free and Mn-rich particle core and a low Co-containing shell. The resulting lower anionic redox activity of the shell is key to improve the electrochemical performance. With the aid of a Couette Taylor Flow Reactor, spherical secondary particles with high tap density and narrow particle size distribution are co-precipitated, leading to a valuable hierarchical morphology with superior electrochemical long-term behavior. Thereby, excellent initial Coulombic efficiencies of 90 – 95 % are attained. Finally, another main focus of this work concentrates on the impact of effective performance-improving shell thickness and, thus, provides further insights into the intrinsic nature of the carbonate-derived integrated LMR-NCM active materials

    Understanding the effect of Nb substitution on Li-Mn-rich layered oxides

    No full text
    Substitution with 4d/5d-elements has been recently established as promising solution for suppressing capacity and voltage fading in Li-Mn-rich layered oxide cathodes for lithium ion batteries. This study aims at understanding of the underlying working principles of this concept through a systematic study on an Nb substituted Co-free material, i.e. Li1.2Ni0.2Mn0.6O2. Nb is confirmed by XRD to be located at the position of Li in the transition metal layer of the C/2 m phase of the composite material thereby increasing the kinetics of activation significantly. Due to substitution, the material experiences a lager extent of reversible anionic redox activity while it also gains an increased thermal stability and shows less oxygen loss than the pristine material during cycling. In addition, substitution also improves the electrochemical performance by increasing the energy efficiency of the material. This study provides insights into the effects of Nb substitution and could be a useful guide for the study of other substitution elements and the ongoing improvement of Li-Mn-rich layered oxide cathodes

    Solvent Co-intercalation into Few-layered Ti 3 C 2 T x MXenes in Lithium Ion Batteries Induced by Acidic or Basic Post-treatment

    No full text
    MXenes, as an emerging class of 2D materials, display distinctive physical and chemical properties, which are highly suitable for high-power battery applications, such as lithium ion batteries (LIBs). Ti3C2Tx (Tx = O, OH, F, Cl) is one of the most investigated MXenes to this day; however, most scientific research studies only focus on the design of multilayered or monolayer MXenes. Here, we present a comprehensive study on the synthesis of few-layered Ti3C2Tx materials and their use in LIB cells, in particular for high-rate applications. The synthesized Ti3C2Tx MXenes are characterized via complementary XRD, Raman spectroscopy, XPS, EDX, SEM, TGA, and nitrogen adsorption techniques to clarify the structural and chemical changes, especially regarding the surface groups and intercalated cations/water molecules. The structural changes are correlated with respect to the acidic and basic post-treatment of Ti3C2Tx. Furthermore, the detected alterations are put into an electrochemical perspective via galvanostatic and potentiostatic investigations to study the pseudocapacitive behavior of few-layered Ti3C2Tx, exhibiting a stable capacity of 155 mAh g–1 for 1000 cycles at 5 A g–1. The acidic treatment of Ti3C2Tx synthesized via the in situ formation of HF through LiF/HCl is able to increase the initial capacity in comparison to the pristine or basic treatment. To gain further insights into the structural changes occurring during (de)lithiation, in situ XRD is applied for LIB cells in a voltage range from 0.01 to 3 V to give fundamental mechanistic insights into the structural changes occurring during the first cycles. Thereby, the increased initial capacity observed for acidic-treated MXenes can be explained by the reduced co-intercalation of solvent molecules

    Dendrite‐Free Zinc Deposition Induced by Zinc Phytate Coating for Long‐life Aqueous Zinc Batteries

    No full text
    Rechargeable aqueous zinc batteries (AZBs) have been recognized as attractive energy storage devices because of their intrinsic superiorities, e.g., high safety, low material cost and environmental benignity. However, challenges such as dendrite formation on the surface of Zn anode, poor reversibility of Zn plating/stripping and short circuit of the cell, having detrimental impact on cycle life and safety, hinder their further development. Herein, we design an artificial solid electrolyte interphase (SEI) layer for the Zn anode by coating it with a zinc phytate (ZP) layer via a facile acid-etching approach. Since the ZP layer can guide uniform Zn deposition under the layer without dendrite formation and maintain a smooth interface between separator and electrode, the symmetric cell with a modified Zn electrode exhibits excellent cycling stability and low polarization voltage. Moreover, compared to the full cell employing a bare Zn anode (MnO 2 /carbon nanofibers (CNFs) || Zn), the one with modified Zn anode (MnO 2 /CNFs || ZP-Zn) delivers much better long-term cycling stability with a capacity retention of 80.2% after 1000 cycles a 0.5 A g -1 . The coating via acid etching method offers a practical technique for further development of AZBs
    corecore