29 research outputs found

    "RaMassays": Synergistic Enhancement of Plasmon-Free Raman Scattering and Mass Spectrometry for Multimodal Analysis of Small Molecules

    Get PDF
    SiO2/TiO2 core/shell (T-rex) beads were exploited as "all-in-one" building-block materials to create analytical assays that combine plasmon-free surface enhanced Raman scattering (SERS) and surface assisted laser desorption/ionization (SALDI) mass spectrometry (RaMassays). Such a multi-modal approach relies on the unique optical properties of T-rex beads, which are able to harvest and manage light in both UV and Vis range, making ionization and Raman scattering more efficient. RaMassays were successfully applied to the detection of small (molecular weight, M.W. <400 Da) molecules with a key relevance in biochemistry and pharmaceutical analysis. Caffeine and cocaine were utilized as molecular probes to test the combined SERS/SALDI response of RaMassays, showing excellent sensitivity and reproducibility. The differentiation between amphetamine/ephedrine and theophylline/theobromine couples demonstrated the synergistic reciprocal reinforcement of SERS and SALDI. Finally, the conversion of L-tyrosine in L-DOPA was utilized to probe RaMassays as analytical tools for characterizing reaction intermediates without introducing any spurious effects. RaMassays exhibit important advantages over plasmonic nanoparticles in terms of reproducibility, absence of interference and potential integration in multiplexed devices

    Alginate-Derived Active Blend Enhances Adsorption and Photocatalytic Removal of Organic Pollutants in Water

    Get PDF
    The ever-increasing need for clean water is one of the most urgent sustainable development goals, which requires environmentally-friendly strategies for water remediation against different types of pollutants. In this work, the possibility of using alginate, a biocompatible and natural polysaccharide, is explored for the preparation of both oxide (TiO2, Al2O3, and yttria-stabilized ZrO2 (YSZ)) macrobeads and an active blend of rich carbon nanoparticles, depolymerized alginate, formic acid, and a complex mixture of other organic acids. In particular, the active blend is obtained through low-energy-demanding microwave assisted digestion of sodium alginate solution, and it is used to enhance the decontamination activity of oxide macrobeads in mild conditions (e.g., low temperature, no pH buffers, and visible illumination). It is demonstrated that the alginate-derived active blend obtained without the addition of any other chemicals increases primarily the adsorption capability of oxide macrobeads toward positively charged pollutants (methylene blue, crystal violet, and tetracaine) and, also, the photocatalytic activity of TiO2 during their degradation. Interestingly, functionalization with the obtained alginate-derived active blend enables better performance in comparison with functionalization of its single components or with carbon-dots (C-Dots) obtained with conventional and more energy-demanding hydrothermal methods, enabling them to obtain a fully sustainable, environmentally-friendly system for water remediation

    Why PEDOT:PSS Should Not Be Used for Raman Sensing of Redox States (and How It Could Be)

    Get PDF
    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been recently proposed for Raman sensing of redox-active species in solution. Here, we investigated the rationale of this approach through systematic experiments, in which the Raman spectrum of PEDOT:PSS was analyzed in the presence of either nonoxidizing or oxidizing electrolytes. The results demonstrated that Raman spectra precisely reflect the conformation of PEDOT units and their interactions with PSS. Two different responses were observed. In the case of oxidizing electrolytes, the effect of charge transfer is accurately transduced in Raman spectrum changes. On the other hand, reduction induces a progressive separation between the PEDOT and PSS chains, which decreases their mutual interaction. This stimulus determines characteristic variations in the intensity, shape, and position of the Raman spectra. However, we demonstrated that the same effects can be obtained either by increasing the concentration of nonoxidizing electrolytes or by deprotonating PSS chains. This poses severe limitations to the use of PEDOT:PSS for this type of Raman sensing. This study allows us to revise most of the Raman results reported in the literature with a clear model, setting a new basis for investigating the dynamics of mixed electronic/ionic charge transfer in conductive polymers

    Enhanced Electrocatalytic Oxygen Evolution in Au–Fe Nanoalloys

    Get PDF
    Oxygen evolution reaction (OER) is the most critical step in water splitting, still limiting the development of efficient alkaline water electrolyzers. Here we investigate the OER activity of Au–Fe nanoalloys obtained by laser-ablation synthesis in solution. This method allows a high amount of iron (up to 11 at %) to be incorporated into the gold lattice, which is not possible in Au–Fe alloys synthesized by other routes, due to thermodynamic constraints. The Au0.89Fe0.11 nanoalloys exhibit strongly enhanced OER in comparison to the individual pure metal nanoparticles, lowering the onset of OER and increasing up to 20 times the current density in alkaline aqueous solutions. Such a remarkable electrocatalytic activity is associated to nanoalloying, as demonstrated by comparative examples with physical mixtures of gold and iron nanoparticles. These results open attractive scenarios to the use of kinetically stable nanoalloys for catalysis and energy conversion

    Switchable Stimuli-Responsive Heterogeneous Catalysis

    Get PDF
    Heterogeneous catalytic systems based on the use of stimuli-responsive materials can be switched from an “on” active state to an “off” inactive state, which contributes to endowing the catalysts with unique functional properties, such as adaptability, recyclability and precise spatial and temporal control on different types of chemical reactions. All these properties constitute a step toward the development of nature-inspired catalytic systems. Even if this is a niche area in the field of catalysis, it is possible to find in literature intriguing examples of dynamic catalysts, whose systematic analysis and review are still lacking. The aim of this work is to examine the recent developments of stimuli-responsive heterogeneous catalytic systems from the viewpoint of different approaches that have been proposed to obtain a dynamic control of catalytic efficiency. Because of the variety of reactions and conditions, it is difficult to make a quantitative comparison between the efficiencies of the considered systems, but the analysis of the different strategies can inspire the preparation of new smart catalytic systems

    "The phactalysts": Carbon nanotube/TiO2composites as phototropic actuators for wireless remote triggering of chemical reactions and catalysis

    No full text
    A new concept of a reconfigurable smart catalyst was developed from the synergistic combination of polycarbonate/carbon nanotube bimorph photoactuators and TiO2. The addition of TiO2 provides the photoactuators with photocatalytic activity and superior opto-mechanical properties, making phototropic actuation fast, reversible and responsive to Vis-NIR light sources. These composites were tested in the wireless, light-driven and spatially controlled remote triggering of different chemical reactions, including local explosions and photocatalytic polymerizations. The same materials were also investigated as efficient opto-mechanical shutters for the light-selective inhibition or activation of specific reactions, such as the photo-induced degradation of organic dyes. These results suggest that the integration of photocatalysts with soft photoactuators can open intriguing opportunities for chemistry and soft robotics

    System Chemistry in Catalysis: Facing the Next Challenges in Production of Energy Vectors and Environmental Remediation

    No full text
    Most of the catalytic processes that assist the production of either renewable energy vectors or degradation of environmental pollutants rely on the interplay among different factors that can be purposely regulated, in order to improve the overall efficiency of reactions. This perspective analyzes some recent examples of ‘systemic catalysts’, which are based on the modification of the reaction microenvironment and exploitation of concurrent/parasitic reactions or different types of chemical looping, in order to bypass some drawbacks that cannot be easily circumvented by standard approaches. Innovative extensions of those concepts and strategies might inspire new breakthroughs in a variety of key catalytic cycles characterized by high complexity

    Spatial and Temporal Control of Information Storage in Cellulose by Chemically Activated Oscillations

    No full text
    Chemical oscillations are exploited to achieve self-expiring graphical information on paper-based supports with precise temporal and spatial control. Writing and self-erasing processes are chemically activated by exciting nonoscillating Belousov–Zhabotinsky (BZ) solutions infiltrated in cellulose paper filters. Exhausted supports can be reactivated many times by adding new BZ medium. Different parameters can be independently controlled to program mono- or multipaced information storage

    All-dielectric core/shell resonators: From plasmon-free SERS to multimodal analysis

    No full text
    All-dielectric materials are emerging as a new class of substrates for enhanced Raman scattering. As ohmic losses are reduced in the absence of plasmonic metals, Raman data obtained with dielectrics are very reproducible and reliable. This mini-review summarizes our recent work in the field of core/shell dielectric resonators designed for Raman purposes, with a special focus on SiO2/TiO2 (T-rex) core/shell beads. These systems are able to exploit the evanescent field generated by total internal reflection and multiple scattering of light at the sphere-to-sphere interface to multiply the number of Raman photons, improving the sensitivity of Raman detection and extending the application of surface enhanced Raman scattering for investigating surface chemical reactions. Examples of the application of T-Rex beads in detecting and monitoring environmental pollutants, greenhouse gases, biochemical species, and biochemical reactions are presented. The use of core/shell resonators for multimodal analysis based on the combination of surface enhanced Raman scattering with either mass spectrometry or refractive index optical sensing is also discussed, suggesting different possible future development
    corecore