10 research outputs found

    Transient chaos and resonant phase mixing in violent relaxation

    Full text link
    This paper explores how orbits in a galactic potential can be impacted by large amplitude time-dependences of the form that one might associate with galaxy or halo formation or strong encounters between pairs of galaxies. A period of time-dependence with a strong, possibly damped, oscillatory component can give rise to large amounts of transient chaos, and it is argued that chaotic phase mixing associated with this transient chaos could play a major role in accounting for the speed and efficiency of violent relaxation. Analysis of simple toy models involving time-dependent perturbations of an integrable Plummer potential indicates that this chaos results from a broad, possibly generic, resonance between the frequencies of the orbits and harmonics thereof and the frequencies of the time-dependent perturbation. Numerical computations of orbits in potentials exhibiting damped oscillations suggest that, within a period of 10 dynamical times t_D or so, one could achieve simultaneously both `near-complete' chaotic phase mixing and a nearly time-independent, integrable end state.Comment: 11 pages and 12 figures: an extended version of the original manuscript, containing a modified title, one new figure, and approximately one page of additional text, to appear in Monthly Notices of the Royal Astronomical Societ

    On relaxation processes in collisionless mergers

    Get PDF
    We analyze N-body simulations of halo mergers to investigate the mechanisms responsible for driving mixing in phase-space and the evolution to dynamical equilibrium. We focus on mixing in energy and angular momentum and show that mixing occurs in step-like fashion following pericenter passages of the halos. This makes mixing during a merger unlike other well known mixing processes such as phase mixing and chaotic mixing whose rates scale with local dynamical time. We conclude that the mixing process that drives the system to equilibrium is primarily a response to energy and angular momentum redistribution that occurs due to impulsive tidal shocking and dynamical friction rather than a result of chaotic mixing in a continuously changing potential. We also analyze the merger remnants to determine the degree of mixing at various radii by monitoring changes in radius, energy and angular momentum of particles. We confirm previous findings that show that the majority of particles retain strong memory of their original kinetic energies and angular momenta but do experience changes in their potential energies owing to the tidal shocks they experience during pericenter passages. Finally, we show that a significant fraction of mass (~ 40%) in the merger remnant lies outside its formal virial radius and that this matter is ejected roughly uniformly from all radii outside the inner regions. This highlights the fact that mass, in its standard virial definition, is not additive in mergers. We discuss the implications of these results for our understanding of relaxation in collisionless dynamical systems.Comment: Version accepted for Publication in Astrophysical Journal, March 20, 2007, v685. Minor changes, latex, 14 figure

    Evolution of the Dark Matter Phase-Space Density Distributions of LCDM Halos

    Full text link
    We study the evolution of phase-space density during the hierarchical structure formation of LCDM halos. We compute both a spherically-averaged surrogate for phase-space density (Q) and the coarse-grained distribution function f(x,v) for dark matter particles that lie within~2 virial radii of four Milky-Way-sized dark matter halos. The estimated f(x,v) spans over four decades at any radius. Dark matter particles that end up within two virial radii of a Milky-Way-sized DM halo at z=0z=0 have an approximately Gaussian distribution in log(f) at early redshifts, but the distribution becomes increasingly skewed at lower redshifts. The value corresponding to the peak of the Gaussian decreases as the evolution progresses and is well described by a power-law in (1+z). The highest values of f are found at the centers of dark matter halos and subhalos, where f can be an order of magnitude higher than in the center of the main halo. The power-law Q(r) profile likely reflects the distribution of entropy (K = sigma^2/rho^{2/3} \propto r^{1.2}), which dark matter acquires as it is accreted onto a growing halo. The estimated f(x, v), on the other hand, exhibits a more complicated behavior. Although the median coarse-grained phase-space density profile F(r) can be approximated by a power-law in the inner regions of halos and at larger radii the profile flattens significantly. This is because phase-space density averaged on small scales is sensitive to the high-f material associated with surviving subhalos, as well as relatively unmixed material (probably in streams) resulting from disrupted subhalos, which contribute a sizable fraction of matter at large radii. (ABRIDGED)Comment: Closely matches version accepted for publicatio

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy (vol 33, pg 110, 2019)

    No full text

    Preoperative risk factors for conversion from laparoscopic to open cholecystectomy: a validated risk score derived from a prospective U.K. database of 8820 patients

    No full text
    corecore