6,127 research outputs found

    Molecular gas associated with IRAS 10361-5830

    Get PDF
    We analyze the distribution of the molecular gas and the dust in the molecular clump linked to IRAS 10361-5830, located in the environs of the bubble-shaped HII region Gum 31 in the Carina region, with the aim of determining the main parameters of the associated material and investigating the evolutionary state of the young stellar objects identified there. Using the APEX telescope, we mapped the molecular emission in the J=3-2 transition of three CO isotopologues, 12CO, 13CO and C18O, over a 1.5' x 1.5' region around the IRAS position. We also observed the high density tracers CS and HCO+ toward the source. The cold dust distribution was analyzed using submillimeter continuum data at 870 \mu\ obtained with the APEX telescope. Complementary IR and radio data at different wavelengths were used to complete the study of the ISM. The molecular gas distribution reveals a cavity and a shell-like structure of ~ 0.32 pc in radius centered at the position of the IRAS source, with some young stellar objects (YSOs) projected onto the cavity. The total molecular mass in the shell and the mean H2_2 volume density are ~ 40 solar masses and ~(1-2) x 103^3 cm−3^{-3}, respectively. The cold dust counterpart of the molecular shell has been detected in the far-IR at 870 \mu\ and in Herschel data at 350 \mu. Weak extended emission at 24 \mu\ from warm dust is projected onto the cavity, as well as weak radio continuum emission. A comparison of the distribution of cold and warm dust, and molecular and ionized gas allows us to conclude that a compact HII region has developed in the molecular clump, indicating that this is an area of recent massive star formation. Probable exciting sources capable of creating the compact HII region are investigated. The 2MASS source 10380461-5846233 (MSX G286.3773-00.2563) seems to be responsible for the formation of the HII region.Comment: Accepted in A&A. 11 pages, 10 Postscript figure

    Dissipative Dynamics of Collisionless Nonlinear Alfven Wave Trains

    Full text link
    The nonlinear dynamics of collisionless Alfven trains, including resonant particle effects is studied using the kinetic nonlinear Schroedinger (KNLS) equation model. Numerical solutions of the KNLS reveal the dynamics of Alfven waves to be sensitive to the sense of polarization as well as the angle of propagation with respect to the ambient magnetic field. The combined effects of both wave nonlinearity and Landau damping result in the evolutionary formation of stationaryOA S- and arc-polarized directional and rotational discontinuities. These waveforms are freqently observed in the interplanetary plasma.Comment: REVTeX, 6 pages (including 5 figures). This and other papers may be found at http://sdphpd.ucsd.edu/~medvedev/papers.htm

    Helical structures from an isotropic homopolymer model

    Full text link
    We present Monte Carlo simulation results for square-well homopolymers at a series of bond lengths. Although the model contains only isotropic pairwise interactions, under appropriate conditions this system shows spontaneous chiral symmetry breaking, where the chain exists in either a left- or a right-handed helical structure. We investigate how this behavior depends upon the ratio between bond length and monomer radius.Comment: 10 pages, 3 figures, accepted for publication by Physical Review Letter

    870 micron continuum observations of the bubble-shaped nebula Gum 31

    Full text link
    We are presenting here a study of the cold dust in the infrared ring nebula Gum 31. We aim at deriving the physical properties of the molecular gas and dust associated with the nebula, and investigating its correlation with the star formation in the region, that was probably triggered by the expansion of the ionization front. We use 870 micron data obtained with LABOCA to map the dust emission. The obtained LABOCA image was compared to archival IR,radio continuum, and optical images. The 870 micron emission follows the 8 micron (Spitzer), 250 micron, and 500 micron (Herschel) emission distributions showing the classical morphology of a spherical shell. We use the 870 micron and 250 micron images to identify 60 dust clumps in the collected layers of molecular gas using the Gaussclumps algorithm. The clumps have effective deconvolved radii between 0.16 pc and 1.35 pc, masses between 70 Mo and 2800 Mo, and volume densities between 1.1x10^3 cm^-3 and 2.04x10^5 cm^-3. The total mass of the clumps is 37600 Mo. The dust temperature of the clumps is in the range from 21 K to 32 K, while inside the HII region reaches ~ 40 K. The clump mass distribution is well-fitted by a power law dN/dlog(M/Mo) proportional to M^(-alpha), with alpha=0.93+/-0.28. The slope differs from those obtained for the stellar IMF in the solar neighborhood, suggesting that the clumps are not direct progenitors of single stars/protostars. The mass-radius relationship for the 41 clumps detected in the 870 microns emission shows that only 37% of them lie in or above the high-mass star formation threshold, most of them having candidate YSOs projected inside. A comparison of the dynamical age of the HII region with the fragmentation time, allowed us to conclude that the collect and collapse mechanism may be important for the star formation at the edge of Gum 31, although other processes may also be acting.Comment: 15 pages, 10 figures. Accepted for publication in A&

    Medical image: casual style of behavior or a necessary element of self

    Get PDF
    The level of medical activities are often determined by attractive image and level of medical professionalism - corresponding self-improvement, a fixture of the physicians image Society dictates medicine and its direct representatives of their demands, but the process of health and fitness - it is an interconnected process which is due to the efforts of both sides. Style physician behavior has a large value in the format of a modern medical communication, sometimes decisive, in terms of the psychological predisposition of the patient to a productive dialogue

    Molecular gas and star formation towards the IR dust bubble S24 and its environs

    Full text link
    We present a multi-wavelength analysis of the infrared dust bubble S24, and its environs, with the aim of investigating the characteristics of the molecular gas and the interstellar dust linked to them, and analyzing the evolutionary status of the young stellar objects (YSOs) identified there. Using APEX data, we mapped the molecular emission in the CO(2-1), 13^{13}CO(2-1), C18^{18}O(2-1), and 13^{13}CO(3-2) lines in a region of about 5'x 5' in size around the bubble. The cold dust distribution was analyzed using ATLASGAL and Herschel images. Complementary IR and radio data were also used.The molecular gas linked to the S24 bubble, G341.220-0.213, and G341.217-0.237 has velocities between -48.0 km sec−1^{-1} and -40.0 km sec−1^{-1}. The gas distribution reveals a shell-like molecular structure of ∼\sim0.8 pc in radius bordering the bubble. A cold dust counterpart of the shell is detected in the LABOCA and Herschel images.The presence of extended emission at 24 μ\mum and radio continuum emission inside the bubble indicates that the bubble is a compact HII region. Part of the molecular gas bordering S24 coincides with the extended infrared dust cloud SDC341.194-0.221. A cold molecular clump is present at the interface between S24 and G341.217-0.237. As regards G341.220-0.213, the presence of an arc-like molecular structure at the northern and eastern sections of this IR source indicates that G341.220-0.213 is interacting with the molecular gas. Several YSO candidates are found to be linked to the IR extended sources, thus confirming their nature as active star-forming regions. The total gas mass in the region and the H2_2 ambient density amount to 10300 M⊙_{\odot} and 5900 cm−3^{-3}, indicating that G341.220-0.213, G341.217-0.237, and the S24 HII region are evolving in a high density medium. A triggering star formation scenario is also investigated.Comment: 17 pages, 16 figures. Submitted to A&A. Revised according to the referee repor

    Twisted topological structures related to M-branes

    Full text link
    Studying the M-branes leads us naturally to new structures that we call Membrane-, Membrane^c-, String^K(Z,3)- and Fivebrane^K(Z,4)-structures, which we show can also have twisted counterparts. We study some of their basic properties, highlight analogies with structures associated with lower levels of the Whitehead tower of the orthogonal group, and demonstrate the relations to M-branes.Comment: 17 pages, title changed on referee's request, minor changes to improve presentation, typos correcte

    Molecular gas towards G18.8+1.8

    Get PDF
    This work aims at investigating the characteristics of the molecular gas associated with the nebula G18.8+1.8, linked to the Wolf-Rayet star HD168206 (WR 113), and its relation to other components of its local interstellar medium. We carried out molecular observations of the 12CO(J=1-0) and (J=2-1) lines with angular resolution of 44 arcsec and 22 arcsec using the SEST telescope. Complementary NANTEN data of the 12CO(1-0) line were also used. The dust emission was analyzed using Spitzer-IRAC images at 8.0 microns, and WISE data at 3.4, 4.6, and 12.0 microns. The SEST data allowed us to identify a molecular component (Cloud 3) having velocities in the interval from ~ +30 to +36 km/s which is most probably linked to the nebula. Morphological and kinematical properties suggest that Cloud 3 constitute a wind-blown molecular half-shell, which expands around WR113. The ratio R_(2-1/1-0) and excitation temperatures indicate that the molecular gas is being irradiated by strong UV radiation. The location of the inner optical ring in the outer edge of Cloud 3 suggests that the stars SerOB2-1, -2, -3, -63, and -64 are responsables for the ionization of Cloud 3 and the inner ring nebula. A comparison between the spatial distribution of the molecular gas and the PAH emission at 8 μ\mum indicates the existence of a PDR between the ionized and the molecular gas. A search for candidate young stellar objects (YSOs) in the region around G18.8+1.8 based on available 2MASS, MSX, IRAS, and Spitzer-IRAC catalogs resulted in the detection of about sixty sources, some of them projected onto Cloud 3. Two small spots of clustered candidates YSOs are projected near the outer border of Cloud 3, although a triggered stellar formation scenario is doubtful.Comment: 12 pages, 9 figures, accepted for publication in A&

    Millikelvin magnetic relaxation measurements of alpha-Fe2O3 antiferromagnetic particles

    Full text link
    In this paper we report magnetic relaxation data for antiferromagnetic alpha-Fe2O3 particles of 5 nm mean diameter in the temperature range 0.1 K to 25 K. The average spin value of these particles S=124 and the uniaxial anisotropy constant D=1.6x10^-2 K have been estimated from the experimental values of the blocking temperature and anisotropy field. The observed plateau in the magnetic viscosity from 3 K down to 100 mK agrees with the occurrence of spin tunneling from the ground state Sz = S. However, the scaling M vs Tln(nu t) is broken below 5 K, suggesting the occurrence of tunneling from excited states below this temperature.Comment: 4 pages (two columns), 4 figure
    • …
    corecore