49 research outputs found

    Search for Axionlike and Scalar Particles with the NA64 Experiment

    Get PDF
    We carried out a model-independent search for light scalar (s) and pseudoscalar axionlike (a) particles that couple to two photons by using the high-energy CERN SPS H4 electron beam. The new particles, if they exist, could be produced through the Primakoff effect in interactions of hard bremsstrahlung photons generated by 100 GeV electrons in the NA64 active dump with virtual photons provided by the nuclei of the dump. The a(s) would penetrate the downstream HCAL module, serving as shielding, and would be observed either through their a(s)γγa(s)\to\gamma \gamma decay in the rest of the HCAL detector or as events with large missing energy if the a(s) decays downstream of the HCAL. This method allows for the probing the a(s) parameter space, including those from generic axion models, inaccessible to previous experiments. No evidence of such processes has been found from the analysis of the data corresponding to 2.84×10112.84\times10^{11} electrons on target allowing to set new limits on the a(s)γγa(s)\gamma\gamma-coupling strength for a(s) masses below 55 MeV.Comment: This publication is dedicated to the memory of our colleague Danila Tlisov. 7 pages, 5 figures, revised version accepted for publication in Phys. Rev. Let

    Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS

    Full text link
    We report on a direct search for sub-GeV dark photons (A') which might be produced in the reaction e^- Z \to e^- Z A' via kinetic mixing with photons by 100 GeV electrons incident on an active target in the NA64 experiment at the CERN SPS. The A's would decay invisibly into dark matter particles resulting in events with large missing energy. No evidence for such decays was found with 2.75\cdot 10^{9} electrons on target. We set new limits on the \gamma-A' mixing strength and exclude the invisible A' with a mass < 100 MeV as an explanation of the muon g_\mu-2 anomaly.Comment: 6 pages, 3 figures; Typos corrected, references adde

    Statistique mensuelle de la viande. 1968 N° 4 APRIL-AVRIL = Monthly statistiques of meat. 1968 No. 4 April

    Get PDF
    In high energy experiments such as active beam dump searches for rare decays and missing energy events, the beam purity is a crucial parameter. In this paper we present a technique to reject heavy charged particle contamination in the 100 GeV electron beam of the H4 beam line at CERN SPS. The method is based on the detection with BGO scintillators of the synchrotron radiation emitted by the electrons passing through a bending dipole magnet. A 100 GeV pi- beam is used to test the method in the NA64 experiment resulting in a suppression factor of 10−5 while the efficiency for electron detection is 95%. The spectra and the rejection factors are in very good agreement with the Monte Carlo simulation. The reported suppression factors are significantly better than previously achieved.ISSN:0168-9002ISSN:1872-957

    Understanding different dominance patterns in western Amazonian forests

    Get PDF
    Dominance of neotropical tree communities by a few species is widely documented, but dominant trees show a variety of distributional patterns still poorly understood. Here, we used 503 forest inventory plots (93,719 individuals ≥2.5 cm diameter, 2609 species) to explore the relationships between local abundance, regional frequency and spatial aggregation of dominant species in four main habitat types in western Amazonia. Although the abundance-occupancy relationship is positive for the full dataset, we found that among dominant Amazonian tree species, there is a strong negative relationship between local abundance and regional frequency and/or spatial aggregation across habitat types. Our findings suggest an ecological trade-off whereby dominant species can be locally abundant (local dominants) or regionally widespread (widespread dominants), but rarely both (oligarchs). Given the importance of dominant species as drivers of diversity and ecosystem functioning, unravelling different dominance patterns is a research priority to direct conservation efforts in Amazonian forests.Publisher PDFPeer reviewe

    Improved exclusion limit for light dark matter from e+e- annihilation in NA64

    Get PDF
    The current most stringent constraints for the existence of sub-GeV dark matter coupling to Standard Model via a massive vector boson A′ were set by the NA64 experiment for the mass region mA′≲250 MeV, by analyzing data from the interaction of 2.84×1011 100-GeV electrons with an active thick target and searching for missing-energy events. In this work, by including A′ production via secondary positron annihilation with atomic electrons, we extend these limits in the 200-300 MeV region by almost an order of magnitude, touching for the first time the dark matter relic density constrained parameter combinations. Our new results demonstrate the power of the resonant annihilation process in missing energy dark-matter searches, paving the road to future dedicated e+ beam efforts

    Search for Axionlike and Scalar Particles with the NA64 Experiment

    Get PDF
    We carried out a model-independent search for light scalar (s) and pseudoscalar axionlike (a) particles that couple to two photons by using the high-energy CERN SPS H4 electron beam. The new particles, if they exist, could be produced through the Primakoff effect in interactions of hard bremsstrahlung photons generated by 100 GeV electrons in the NA64 active dump with virtual photons provided by the nuclei of the dump. The a(s) would penetrate the downstream HCAL module, serving as a shield, and would be observed either through their a(s)→γγ decay in the rest of the HCAL detector, or as events with a large missing energy if the a(s) decays downstream of the HCAL. This method allows for the probing of the a(s) parameter space, including those from generic axion models, inaccessible to previous experiments. No evidence of such processes has been found from the analysis of the data corresponding to 2.84×10^{11} electrons on target, allowing us to set new limits on the a(s)γγ-coupling strength for a(s) masses below 55 MeV

    Hunting down the X17 boson at the CERN SPS

    Get PDF
    Recently, the ATOMKI experiment has reported new evidence for the excess of e+ee^+ e^- events with a mass \sim17 MeV in the nuclear transitions of 4^4He, that they previously observed in measurements with 8^8Be. These observations could be explained by the existence of a new vector X17X17 boson. So far, the search for the decay X17e+eX17 \rightarrow e^+ e^- with the NA64 experiment at the CERN SPS gave negative results. Here, we present a new technique that could be implemented in NA64 aiming to improve the sensitivity and to cover the remaining X17X17 parameter space. If a signal-like event is detected, an unambiguous observation is achieved by reconstructing the invariant mass of the X17X17 decay with the proposed method. To reach this goal an optimization of the X17X17 production target, as well as an efficient and accurate reconstruction of two close decay tracks, is required. A dedicated analysis of the available experimental data making use of the trackers information is presented. This method provides independent confirmation of the NA64 published results [Phys. Rev. D101, 071101 (2020)], validating the tracking procedure. The detailed Monte Carlo study of the proposed setup and the background estimate shows that the goal of the proposed search is feasible

    Search for pseudoscalar bosons decaying into e+e- pairs in the NA64 experiment at the CERN SPS

    Get PDF
    We report the results of a search for a light pseudoscalar particle a that couples to electrons and decays to e+e- performed using the high-energy CERN SPS H4 electron beam. If such light pseudoscalar exists, it could explain the ATOMKI anomaly (an excess of e+e- pairs in the nuclear transitions of Be8 and He4 nuclei at the invariant mass ≃17 MeV observed by the experiment at the 5 MV Van de Graaff accelerator at ATOMKI, Hungary). We used the NA64 data collected in the "visible mode"configuration with a total statistics corresponding to 8.4×1010 electrons on target (EOT) in 2017 and 2018. In order to increase sensitivity to small coupling parameter ϵ we also used the data collected in 2016-2018 in the "invisible mode"configuration of NA64 with a total statistics corresponding to 2.84×1011 EOT. The background and efficiency estimates for these two configurations were retained from our previous analyses searching for light vector bosons and axionlike particles (ALP) (the latter were assumed to couple predominantly to γ). In this work we recalculate the signal yields, which are different due to different cross section and lifetime of a pseudoscalar particle a, and perform a new statistical analysis. As a result, the region of the two dimensional parameter space ma-ϵ in the mass range from 1 to 17.1 MeV is excluded. At the mass of the central value of the ATOMKI anomaly (the first result obtained on the beryllium nucleus, 16.7 MeV) the values of ϵ in the range 2.1×10-4<ϵ<3.2×10-4 are excluded
    corecore