45 research outputs found

    Barrier effect of Esoxx® on esophageal mucosal damage: experimental study on ex-vivo swine model

    Get PDF
    The aim of the present study was to assess the potential barrier effect of Esoxx®, a new nonprescription medication under development for the relief of gastroesophageal reflux symptoms. Esoxx is based on a mixture of hyaluronic acid and chondroitin sulfate in a bioadhesive suspension of Lutrol® F 127 polymer (poloxamer 407) which facilitates the product adhesion on the esophageal mucosa. The mucosal damage was induced by 15 to 90 minutes of perfusion with an acidic solution (HCl, pH 1.47) with or without pepsin (2000 U/mL, acidified to pH 2; Sigma-Aldrich). Mucosal esophageal specimens were histologically evaluated and Evans blue dye solution was used to assess the permeability of the swine mucosa after the chemical injury. The results show that: (1) esophageal mucosal damage is related to the perfusion time and to the presence of pepsin, (2) mucosal damage is associated with an increased permeability, documented by an evident Evans blue staining, (3) perfusion with Esoxx is able to reduce the permeability of the injured mucosa, even after saline washing of the swine esophagus. These preliminary results support further clinical studies of Esoxx in the topical treatment of gastroesophageal reflux symptoms

    Phenological shifts of abiotic events, producers and consumers across a continent

    Get PDF
    Ongoing climate change can shift organism phenology in ways that vary depending on species, habitats and climate factors studied. To probe for large-scale patterns in associated phenological change, we use 70,709 observations from six decades of systematic monitoring across the former Union of Soviet Socialist Republics. Among 110 phenological events related to plants, birds, insects, amphibians and fungi, we find a mosaic of change, defying simple predictions of earlier springs, later autumns and stronger changes at higher latitudes and elevations. Site mean temperature emerged as a strong predictor of local phenology, but the magnitude and direction of change varied with trophic level and the relative timing of an event. Beyond temperature-associated variation, we uncover high variation among both sites and years, with some sites being characterized by disproportionately long seasons and others by short ones. Our findings emphasize concerns regarding ecosystem integrity and highlight the difficulty of predicting climate change outcomes. The authors use systematic monitoring across the former USSR to investigate phenological changes across taxa. The long-term mean temperature of a site emerged as a strong predictor of phenological change, with further imprints of trophic level, event timing, site, year and biotic interactions.Peer reviewe

    Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology

    Get PDF
    We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. The data cover the period 1890-2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. The database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for first spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staff of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change.Peer reviewe

    Animal models of chemically induced intestinal inflammation: Predictivity and ethical issues

    No full text
    The debate about the ethical and scientific issues regarding the use of animals in research is mainly focused on these questions: a) whether preclinical studies in animals are still ethically acceptable; b) whether it is possible to establish more soundly their predictivity; c) what measures should be taken to reduce the clinical attrition often due to biased preclinical assessment of potential efficacy of new drugs. This review aims at a critical revision of animal models of chemically induced intestinal inflammation in drug development. These models, notwithstanding differences among species, still represent a major source of information about biological systems and can have undisputable translational value, provided that appropriate measures are taken to ensure that experiments are both scientifically and ethically justified. These measures include: a) more stringent application to preclinical experiments of standards used in clinical studies (such as sample size, randomization, inclusion/exclusion criteria, blinding); b) selection of the animal model after careful pathophysiological scrutiny bearing in mind inherent limitations of each model (e.g. acute self-limiting vs chronic disease, animal species, role of the intestinal immune system and microbiome); and c) experimental design duly considering the specific pharmacological profile of each agent to be screened (such as bioavailability, route of administration, full consideration of the pharmacological spectrum). In this perspective, the new European legislation is an opportunity to fully apply these standards so that in vivo animal models can provide an invaluable mean to study complex physiological and biochemical interactions, which cannot be completely simulated in silico and/or in vitro

    Enteric neuroplasticity evoked by inflammation

    No full text
    Neuroplastic changes in the enteric nervous system (ENS) may be observed in physiological states, such as development and aging, or occur as a consequence of different pathological conditions, ranging from enteric neuropathies (e.g., Hirschsprung's disease) to intestinal (e.g., inflammatory bowel disease) or extra-intestinal diseases (e.g., Parkinson's disease). Studying ENS plasticity may help to elucidate the pathophysiology of several diseases and have a bearing on the development of new pharmacological interventions. In the present review, we would like to focus on neuronal plasticity evoked by gastrointestinal inflammation occurring in inflammatory bowel disease and in a subset of patients with severe derangement of gut motility due to an enteric neuropathy characterized by an inflammatory infiltrate of the enteric plexuses. Major features of neuroplasticity within the enteric microenvironment encompass structural abnormalities ranging from nerve re-arrangement (e.g., hypertrophy and hyperplasia) to degeneration and loss of enteric ganglion cells; altered synthesis, content and release of neurotransmitters as well as up- or down-regulation of receptor systems; gastrointestinal dysfunction characterized by sensory-motor and secretory impairment of the gut. Interestingly, neuronal changes may also occur in segments of the gastrointestinal tract remote from the site of the original inflammation, e.g. the ileum may show neuroplastic changes during colitis. Sometimes, the inflamed site may even be outside the gut. Among potential mechanisms underlying ENS plasticity, neurotrophins and enteric glia deserve special attention. A better comprehension of ENS plasticity during inflammation could be instrumental to develop new therapeutic options for patients with IBD and inflammatory enteric neuropathies. © 2006 Elsevier B.V. All rights reserved

    Non-peptidyl low molecular weight radical scavenger IAC attenuates DSS-induced colitis in rats

    No full text
    AIM: To investigate the effects of the free radical scavenger bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)decandioate (IAC) in the dextran sodium sulphate (DSS) experimental model of ulcerative colitis

    Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome

    No full text
    Mediators released by the intestinal mucosa of patients with irritable bowel syndrome (IBS) affect the function of enteric and extrinsic sensory nerves, which can contribute to the development of symptoms. Little is known about the effects of mucosal mediators on intestinal neuroplasticity. We investigated how these mediators affect the phenotypes of colonic mucosa nerve fibers, neuron differentiation, and fiber outgrowth
    corecore