4 research outputs found

    Modeling of GERDA Phase II data

    Get PDF
    The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta (0νββ0\nu\beta\beta) decay of 76^{76}Ge. The technological challenge of GERDA is to operate in a "background-free" regime in the region of interest (ROI) after analysis cuts for the full 100\,kg\cdotyr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around QββQ_{\beta\beta} for the 0νββ0\nu\beta\beta search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos (2νββ2\nu\beta\beta) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for GERDA Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of 16.040.85+0.7810316.04^{+0.78}_{-0.85} \cdot 10^{-3}\,cts/(kg\cdotkeV\cdotyr) for the enriched BEGe data set and 14.680.52+0.4710314.68^{+0.47}_{-0.52} \cdot 10^{-3}\,cts/(kg\cdotkeV\cdotyr) for the enriched coaxial data set. These values are similar to the one of Gerda Phase I despite a much larger number of detectors and hence radioactive hardware components

    Investigation of CaMoO4 single crystals with low residual absorption

    No full text
    Calcium molybdate enriched with the 100Mo isotope (40Ca100MoO4) is a promising material for use in cryogenic scintillation detectors. The main requirements of crystalline elements of the detector are absence of color and the attenuation coefficient (μ) not higher than 0.01 cm−1 at 520 nm wavelength. 40Ca100MoO4 and 40Ca100MoO4:Nb5+ single crystals have been investigated. The influence of isothermal annealing on the attenuation spectra in the 350 to 700 nm wavelength range has been studied. A broad absorption band with a maximum at λ=460 nm is observed in the attenuation spectra of the sample. The dichroism phenomenon which is associated with anisotropy of the color centers in the crystals is observed along directions perpendicular to the optical axis. Annealing of the enriched samples at 1250 °C in an O2 atmosphere leads to a substantial reduction of the intensity of the band near 460 nm. The attenuation coefficient of the 40Ca100MoO4:Nb5+ crystals meets the requirement, which is μ≪0.01 cm−1 at λ=520 nm. It is determined that absorption band near 460 nm and dichroism are absent

    The SOX experiment hunts the sterile neutrino

    No full text
    The SOX (Short distance neutrino Oscillations with BoreXino) experiment aims to perform a resolutive measurement for testing the longstanding hypotesis of a sterile neutrino in the eV2 mass scale. A very intense and well calibrated 144Ce−144Pr antineutrino source will be placed under the large size and very low background Borexino detector at Laboratori Nazionali del Gran Sasso in Italy. Borexino demonstrated a such energy and position resolution that the disappearance experiment can be performed and the short distance oscillations might be directly observed. In this paper an overview of the key elements of the experiment is given and the expected sensitivity to determine the sterile neutrino mass is shown
    corecore