17 research outputs found

    Assessment and Management of Hypertension among Patients on Peritoneal Dialysis

    Get PDF
    Approximately 7%-10% of patients with ESKD worldwide undergo peritoneal dialysis (PD) as kidney replacement therapy. The continuous nature of this dialytic modality and the absence of acute shifts in pressure and volume parameters is an important differentiation between PD and in-center hemodialysis. However, the burden of hypertension and prognostic association of BP with mortality follow comparable patterns in both modalities. Although management of hypertension uses similar therapeutic principles, long-term preservation of residual diuresis and longevity of peritoneal membrane function require particular attention in the prescription of the appropriate dialysis regimen among those on PD. Dietary sodium restriction, appropriate use of icodextrin, and limited exposure of peritoneal membrane to bioincompatible solutions, as well as adaptation of the PD regimen to the peritoneal transport characteristics, are first-line therapeutic strategies to achieve adequate volume control with a potential long-term benefit on technique survival. Antihypertensive drug therapy is a second-line therapeutic approach, used when BP remains unresponsive to the above volume management strategies. In this article, we review the available evidence on epidemiology, diagnosis, and treatment of hypertension among patients on PD and discuss similarities and differences between PD and in-center hemodialysis. We conclude with a call for randomized trials aiming to elucidate several areas of uncertainty in management of hypertension in the PD population

    Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial

    Get PDF
    Background: Short-term treatment for people with type 2 diabetes using a low dose of the selective endothelin A receptor antagonist atrasentan reduces albuminuria without causing significant sodium retention. We report the long-term effects of treatment with atrasentan on major renal outcomes. Methods: We did this double-blind, randomised, placebo-controlled trial at 689 sites in 41 countries. We enrolled adults aged 18–85 years with type 2 diabetes, estimated glomerular filtration rate (eGFR)25–75 mL/min per 1·73 m 2 of body surface area, and a urine albumin-to-creatinine ratio (UACR)of 300–5000 mg/g who had received maximum labelled or tolerated renin–angiotensin system inhibition for at least 4 weeks. Participants were given atrasentan 0·75 mg orally daily during an enrichment period before random group assignment. Those with a UACR decrease of at least 30% with no substantial fluid retention during the enrichment period (responders)were included in the double-blind treatment period. Responders were randomly assigned to receive either atrasentan 0·75 mg orally daily or placebo. All patients and investigators were masked to treatment assignment. The primary endpoint was a composite of doubling of serum creatinine (sustained for ≥30 days)or end-stage kidney disease (eGFR <15 mL/min per 1·73 m 2 sustained for ≥90 days, chronic dialysis for ≥90 days, kidney transplantation, or death from kidney failure)in the intention-to-treat population of all responders. Safety was assessed in all patients who received at least one dose of their assigned study treatment. The study is registered with ClinicalTrials.gov, number NCT01858532. Findings: Between May 17, 2013, and July 13, 2017, 11 087 patients were screened; 5117 entered the enrichment period, and 4711 completed the enrichment period. Of these, 2648 patients were responders and were randomly assigned to the atrasentan group (n=1325)or placebo group (n=1323). Median follow-up was 2·2 years (IQR 1·4–2·9). 79 (6·0%)of 1325 patients in the atrasentan group and 105 (7·9%)of 1323 in the placebo group had a primary composite renal endpoint event (hazard ratio [HR]0·65 [95% CI 0·49–0·88]; p=0·0047). Fluid retention and anaemia adverse events, which have been previously attributed to endothelin receptor antagonists, were more frequent in the atrasentan group than in the placebo group. Hospital admission for heart failure occurred in 47 (3·5%)of 1325 patients in the atrasentan group and 34 (2·6%)of 1323 patients in the placebo group (HR 1·33 [95% CI 0·85–2·07]; p=0·208). 58 (4·4%)patients in the atrasentan group and 52 (3·9%)in the placebo group died (HR 1·09 [95% CI 0·75–1·59]; p=0·65). Interpretation: Atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease who were selected to optimise efficacy and safety. These data support a potential role for selective endothelin receptor antagonists in protecting renal function in patients with type 2 diabetes at high risk of developing end-stage kidney disease. Funding: AbbVie

    Sensors based on graphene/polymer nanocomposites

    No full text
    Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Μικροσυστήματα και Νανοδιατάξεις

    Therapeutic Advances in Diabetic Kidney Disease

    No full text
    Although sodium glucose co-transporter type 2 (SGLT-2) inhibitors were initially introduced as glucose-lowering medications, it was later discovered that cardiorenal protection is the most important treatment effect of these agents. A triad of landmark trials consistently showed the benefits of SGLT-2 inhibitors on kidney and cardiovascular outcomes in patients with chronic kidney disease (CKD), irrespective of the presence or absence of Type 2 diabetes (T2D). Furthermore, finerenone is a novel, selective, nonsteroidal mineralocorticoid receptor antagonist (MRA) that safely and effectively improved cardiorenal outcomes in a large Phase 3 clinical trial program that included >13,000 patients with T2D and a wide spectrum of CKD. These two drug categories have shared and distinct mechanisms of action, generating the hypothesis that an overadditive cardiorenal benefit with their combined use may be biologically plausible. In this article, we describe the mechanism of action, and we provide an overview of the evidence for cardiorenal protection with SGLT-2 inhibitors and the nonsteroidal MRA finerenone in patients with CKD associated with T2D

    Vitamin K Supplementation for Prevention of Vascular Calcification in Chronic Kidney Disease Patients: Are We There Yet?

    No full text
    Chronic Kidney Disease (CKD) patients are at high risk of presenting with arterial calcification or stiffness, which confers increased cardiovascular mortality and morbidity. In recent years, it has become evident that VC is an active process regulated by various molecules that may act as inhibitors of vessel mineralization. Matrix Gla Protein (MGP), one the most powerful naturally occurring inhibitors of arterial calcification, requires vitamin K as a co-factor in order to undergo post-translational &gamma;-carboxylation and phosphrorylation and become biologically active. The inactive form of MGP (dephosphorylated, uncarboxylated dp-ucMGP) reflects vitamin K deficiency and has been repeatedly associated with surrogate markers of VC, stiffness, and cardiovascular outcomes in CKD populations. As CKD is a state of progressive vitamin K depletion and VC, research has focused on clinical trials aiming to investigate the possible beneficial effects of vitamin K in CKD and dialysis patients. In this study, we aim to review the current evidence regarding vitamin K supplementation in uremic patients

    Evidence for Cardiorenal Protection with SGLT-2 Inhibitors and GLP-1 Receptor Agonists in Patients with Diabetic Kidney Disease

    No full text
    For almost two decades, the management of patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) was based on the optimal glycemic and blood pressure control as well as on the adequate blockade of the renin-angiotensin-system. Over the past few years, sodium-glucose co-transporter 2 (SGLT-2) inhibitors and glucagone-like peptide 1 receptor agonists (GLP1-RAs) were added to our therapeutic armarhatum, offering promise for more effective mitigation of the substantial residual cardiorenal risk of these patients. Large randomized controlled trials (RCTs) designed to demonstrate the cardiovascular safety of SGLT-2 inhibitors and GLP1-RAs showed that these novel anti-diabetic medications improve cardiovascular outcomes in patients with T2DM. RCTs conducted specifically in CKD patients with or without T2DM demonstrated that SGLT-2 inhibitors were also effective in retarding the progression of kidney injury to end-stage kidney disease. The kidney protective effects of GLP1-RA are not yet proven, but RCTs are currently ongoing to investigate this crucial research question. In this article, we review the available clinical-trial evidence supporting the use of SGLT-2 inhibitors and GLP1-RAs for cardiorenal protection in patients with T2DM and CKD. We provide clinical practice recommendations for a personalized approach in the use of these novel therapies, according to the severity of CKD and the presence of other cardiometabolic risk factors

    Evidence for Cardiorenal Protection with SGLT-2 Inhibitors and GLP-1 Receptor Agonists in Patients with Diabetic Kidney Disease

    No full text
    For almost two decades, the management of patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) was based on the optimal glycemic and blood pressure control as well as on the adequate blockade of the renin-angiotensin-system. Over the past few years, sodium-glucose co-transporter 2 (SGLT-2) inhibitors and glucagone-like peptide 1 receptor agonists (GLP1-RAs) were added to our therapeutic armarhatum, offering promise for more effective mitigation of the substantial residual cardiorenal risk of these patients. Large randomized controlled trials (RCTs) designed to demonstrate the cardiovascular safety of SGLT-2 inhibitors and GLP1-RAs showed that these novel anti-diabetic medications improve cardiovascular outcomes in patients with T2DM. RCTs conducted specifically in CKD patients with or without T2DM demonstrated that SGLT-2 inhibitors were also effective in retarding the progression of kidney injury to end-stage kidney disease. The kidney protective effects of GLP1-RA are not yet proven, but RCTs are currently ongoing to investigate this crucial research question. In this article, we review the available clinical-trial evidence supporting the use of SGLT-2 inhibitors and GLP1-RAs for cardiorenal protection in patients with T2DM and CKD. We provide clinical practice recommendations for a personalized approach in the use of these novel therapies, according to the severity of CKD and the presence of other cardiometabolic risk factors

    Hypertension in Dialysis Patients: Diagnostic Approaches and Evaluation of Epidemiology

    No full text
    Whereas hypertension is an established cardiovascular risk factor in the general population, the contribution of increased blood pressure (BP) to the huge burden of cardiovascular morbidity and mortality in patients receiving dialysis continues to be debated. In a large part, this controversy is attributable to particular difficulties in the accurate diagnosis of hypertension. The reverse epidemiology of hypertension in dialysis patients is based on evidence from large cohort studies showing that routine predialysis or postdialysis BP measurements exhibit a U-shaped or J-shaped association with cardiovascular or all-cause mortality. However, substantial evidence supports the notion that home or ambulatory BP measurements are superior to dialysis-unit BP recordings in diagnosing hypertension, in detecting evidence of target-organ damage and in prognosticating the all-cause death risk. In the first part of this article, we explore the accuracy of different methods of BP measurement in diagnosing hypertension among patients on dialysis. In the second part, we describe how the epidemiology of hypertension is modified when the assessment of BP is based on dialysis-unit versus home or ambulatory recordings
    corecore