10 research outputs found

    The Effect of CeO2 Preparation Method on the Carbon Pathways in the Dry Reforming of Methane on Ni/CeO2 Studied by Transient Techniques

    No full text
    The present work discusses the effect of CeO2 synthesis method (thermal decomposition (TD), precipitation (PT), hydrothermal (HT), and sol-gel (SG)) on the carbon pathways of dry reforming of methane with carbon dioxide (DRM) applied at 750 °C over 5 wt% Ni/CeO2. In particular, specific transient and isotopic experiments (use of 13CO, 13CO2, and 18O2) were designed and conducted in an attempt at providing insights about the effect of support’s preparation method on the concentration (mg gcat−1), reactivity towards oxygen, and transient evolution rates (μmol gcat−1 s−1) of the inactive carbon formed under (i) CH4/He (methane decomposition), (ii) CO/He (reverse Boudouard reaction), and (iii) the copresence of the two (CH4/CO/He, use of 13CO). Moreover, important information regarding the relative contribution of CH4 and CO2 activation routes towards carbon formation under DRM reaction conditions was derived by using isotopically labelled 13CO2 in the feed gas stream. Of interest was also the amount, and the transient rate, of carbon removal via the participation of support’s labile active oxygen species

    A systematic literature review on the participation aspects of environmental and nature-based citizen science initiatives

    No full text
    It is commonly argued that, despite the tremendous resonance Citizen Science (CS) has shown in recent years, there is still lack of understanding of important aspects defining citizensā€™ participation and engagement in CS initiatives. While CS initiatives could provide a vehicle to foster forms of participation contributing to the democratization of science, there is still limited attention paid to the ā€œCitizenā€ component of the Citizen Science term. For the purpose of this work, we systematically reviewed the available literature for empirical studies in respect to citizensā€™ participation in environmental and nature-based CS initiatives established during the last two decades, using the PRISMA methodology. The participatory facet of the retrieved 119 CS initiatives was analysed on the basis of: (a) exclusion and inclusion demographic factors, (b) CS models and practices, (c) facil-itators and constraints of citizenā€™s participation, and (d) environmental citizenship. Our findings show that the majority of the CS initiatives did not place restrictions on gender participation; how-ever, we have identified that mostly highly educated adults participated in the reviewed initiatives. In addition, most of the CS initiatives reported in the literature were situated in the EU and USA, were mostly limited to the local scale, and primarily followed the contributory model. Academic institutions were found to coordinate the majority of the CS initiatives examined. By using digital technologies, academic scientists were able to control and increase data quality, as well as to engage a broader audience, even though they were mostly treating volunteers as ā€œdata collectorsā€, desiring their long-term engagement. Therefore, it will be of CS benefit to be better aligned with the mental-ity and needs of citizens. In this direction CS initiatives should trigger citizensā€™ learning gains and interpersonal/social benefits and personal, environmental, and social motivations, but also to shift their goals towards contributing to science and citizensā€™ connection with nature. On the other hand, there is a need to overcome any design and implementation barriers, and to enhance democratization through a more participative engagement of active and aware citizens, thus promoting environmental citizenship

    The Effect of CO Partial Pressure on Important Kinetic Parameters of Methanation Reaction on Co-Based FTS Catalyst Studied by SSITKA-MS and Operando DRIFTS-MS Techniques

    No full text
    A 20 wt% Co-0.05 wt% Pt/γ-Al2O3 catalyst was investigated to obtain a fundamental understanding of the effect of CO partial pressure (constant H2 partial pressure) on important kinetic parameters of the methanation reaction (x vol% CO/25 vol% H2, x = 3, 5 and 7) by performing advanced transient isotopic and operando diffuse reflectance infrared Fourier transform spectroscopy–mass spectrometry (DRIFTS-MS) experiments. Steady State Isotopic Transient Kinetic Analysis (SSITKA) experiments conducted at 1.2 bar, 230 °C after 5 h in CO/H2 revealed that the surface coverages, θCO and θCHx and the mean residence times, τCO, and τCHx (s) of the reversibly adsorbed CO-s and active CHx-s (Cα) intermediates leading to CH4, respectively, increased with increasing CO partial pressure. On the contrary, the apparent activity (keff, s−1) of CHx-s intermediates, turnover frequency (TOF, s−1) of methanation reaction, and the CH4-selectivity (SCH4, %) were found to decrease. Transient isothermal hydrogenation (TIH) following the SSITKA step-gas switch provided important information regarding the reactivity and concentration of active (Cα) and inactive -CxHy (Cβ) carbonaceous species formed after 5 h in the CO/H2 reaction. The latter Cβ species were readily hydrogenated at 230 °C in 50%H2/Ar. The surface coverage of Cβ was found to vary only slightly with increasing CO partial pressure. Temperature-programmed hydrogenation (TPH) following SSITKA and TIH revealed that other types of inactive carbonaceous species (Cγ) were formed during Fischer-Tropsch Synthesis (FTS) and hydrogenated at elevated temperatures (250–550 °C). The amount of Cγ was found to significantly increase with increasing CO partial pressure. All carbonaceous species hydrogenated during TIH and TPH revealed large differences in their kinetics of hydrogenation with respect to the CO partial pressure in the CO/H2 reaction mixture. Operando DRIFTS-MS transient isothermal hydrogenation of adsorbed CO-s formed after 2 h in 5 vol% CO/25 vol% H2/Ar at 200 °C coupled with kinetic modeling (H-assisted CO hydrogenation) provided information regarding the relative reactivity (keff) for CH4 formation of the two kinds of linear-type adsorbed CO-s on the cobalt surface

    Promotional effect of Ce doping in Cu-4 Al1Ox - LDO catalyst for low-T practical NH3-SCR: Steady-state and transient kinetics studies

    No full text
    There are very few catalysts reported so far to withstand poisoning by the co-presence of SO2, HCl and H2O in the flue gas stream for the NH3-SCR. The purpose of this work was to report for the first time, to the best of our knowledge, the development of a new catalyst, Ce-2/Cu4Al1Ox-layered double oxide (LDO) with high low-temperature de-NOx activity and high poisoning resistance in the presence of H2O, HCl and SO2 in the feed gas stream. In particular, Ce-2/ Cu4Al1Ox-LDO catalyst in the presence of 5% H2O, 100 ppm HCl and 100 ppm SO2 in the NH3-SCR feed gas stream presented after 9 h of continuous reaction at 200 degrees C a relatively stable NOx conversion (ca. 57.2%), where all other three control catalysts tested, namely: Cu/Al2O3,Cu-Ce/Al2O3 and Cu-4 Al3Ox showed severe deactivation, where NOx conversion values of similar to 0, 0 and 51%, respectively, were measured. It should be noted that the Ce-2/Cu(4)Al(1)O(x)catalyst achieved NOx conversion of 95.3% at 200 degrees C in the absence of HCI and SO2 in the feed gas stream. A suit of experimental techniques such as BET, XPS, ICS, in situ DRIFTS, pyridine- and NH3-FTIR, NH3-TPD, H-2-TPR and transient NH3 chemisorption and NH3-SCR kinetics were employed to reveal possible reasons for the high activity and poisoning resistance exhibited by the Ce-2/Cu4Al1Ox catalytic system. XRD and XPS analyses showed that Ce-2/Cu-4 Al1Ox had highly dispersed Cu2+ and Ce3+ species, which likely promote the rate of NH3-SCR. Py-FTIR, NH3-TPD and H-2-TPR results indicated that Ce-2/Cu-4 Al1Ox has a larger concentration of surface acid sites and stronger redox properties. According to H-2-TPR, ICS and insitu DRIFTS analyses, the redox properties of Ce-2/Cu-4 Al1Ox were significantly less affected by the presence of HCI and SO2 gases, and lower amounts of metal sulfate and metal chloride species were formed, thus proving its exhibited poisoning resistance. Transient kinetics experiments revealed that the larger site reactivity (k, s( -1)) and NO oxidation rate to NO2 and not the surface coverage of adsorbed NHx-s active intermediates dictates the higher rate of NH3-SCR over Ce-2/Cu-4 Al1Ox compared to Cu/Al2O3 and Cu-Ce/Al2O3 non LDO- materials

    Remarkable N-2-selectivity enhancement of practical NH3-SCR over Co0.5Mn1Fe0.25Al0.75Ox-LDO: The role of Co investigated by transient kinetic and DFT mechanistic studies

    No full text
    A Co0.5Mn1Fe0.25Al0.75Ox-LDO catalyst was developed which showed excellent performance for the low-temperature NH3-SCR. NOx conversions 100% were achieved in the whole 100-250 degrees C range, while after 10-h operation at 150 degrees C with 100 ppm SO2/5 vol% H2O in the feed, the NOx conversion was maintained at 80%. This catalyst provided a much better N-2-selectivity than the Mn1Fe0.25Al0.75Ox-LDO and Mn1Al1Ox-LDO, especially at 150-300 degrees C. It was found that Co0.5Mn1Fe0.25Al0.75Ox possessed higher surface acidity and reducibility, while XPS analyses indicated an electron transfer between Co3+/Co2+ and Mn4+/Mn3+ redox cycles, leading to a much lower N2O formation, supported by Density Functional Theory (DFT) calculations. Detailed analysis of gas responses obtained upon various step-gas switches was performed, which allowed to measure the surface concentration and reactivity of preadsorbed NOx-s and NHx-s leading to N-2 and N2O. Transient kinetic and DFT studies strongly suggested likely mechanisms of NH3-SCR and the critical role of Co for N-2-selectivity enhancement

    Cu-Ce-La-Ox as efficient CO oxidation catalysts: effect of Cu content

    No full text
    Nanograins of Ce-La-xCu-O oxides, of 16 nm2 area size, are tested as materials towards the CO oxidation . Preservation of the cubic lattice structure following La3+ and Cu2+ metal cations doping is confirmed based on the powder X-ray diffraction and Raman studies. From XPS, the presence of mixed Ce3+/Ce4+ and Cu2+/Cu1+ oxidation states was confirmed, which was more profound in the low Cu-content Ce-La-xCu-O catalysts. Cu increases the concentration of oxygen vacant sites in the doped-CeO2 according to the Raman intensity ratio IOv/IF2g of 1.58 and 1.78 with the increase in copper content from 7 to 20 at.% as compared to the lower value of 0.44 for the Ce-La. The mobility of the surface and bulk lattice oxygen is further investigated using 16O/18O isotopic exchange (TIIE), and is found to be Cu at.% dependent. For the case of Ce-La-20Cu, the participation of the lattice oxygen (OL) in the reaction mechanism has been demonstrated using transient experiments. Accordingly, the specific rate (Ī¼mol CO m-2s-1) of the CO oxidation reaction is found to be higher for the Ce-La-20Cu and Ce-La-7Cu catalysts, corroborating thus the presence of more mobile/labile oxygen species in those ternary catalysts as opposed to the other lower copper compositions

    Design Aspects of Doped CeO2 for Low-Temperature Catalytic CO Oxidation: Transient Kinetics and DFT Approach

    No full text
    CO elimination through oxidation over highly active and cost-effective catalysts is a way forward for many processes of industrial and environmental importance. In this study, doped CeO2 with transition metals (TM = Cu, Co, Mn, Fe, Ni, Zr, and Zn) at a level of 20 at. % was tested for CO oxidation. The oxides were prepared using microwave-assisted solā€“gel synthesis to improve catalystā€™s performance for the reaction of interest. The effect of heteroatoms on the physicochemical properties (structure, morphology, porosity, and reducibility) of the binary oxides Mā€“Ceā€“O was meticulously investigated and correlated to their CO oxidation activity. It was found that the catalytic activity (per gram basis or TOF, sā€“1) follows the order Cuā€“Ceā€“O > Ceā€“Coā€“O > Niā€“Ceā€“O > Mnā€“Ceā€“O > Feā€“Ceā€“O > Ceā€“Znā€“O > CeO2. Participation of mobile lattice oxygen species in the CO/O2 reaction does occur, the extent of which is heteroatom-dependent. For that, state-of-the-art transient isotopic 18O-labeled experiments involving 16O/18O exchange followed by step-gas CO/Ar or CO/O2/Ar switches were used to quantify the contribution of lattice oxygen to the reaction. SSITKA-DRIFTS studies probed the formation of carbonates while validating the Marsā€“van Krevelen (MvK) mechanism. Scanning transmission electron microscopy-high-angle annular dark field imaging coupled with energy-dispersive spectroscopy proved that the elemental composition of dopants in the individual nanoparticle of ceria is less than their composition at a larger scale, allowing the assessment of the doping efficacy. Despite the similar structural features of the catalysts, a clear difference in the Olattice mobility was also found as well as its participation (as expressed with the Ī± descriptor) in the reaction, following the order Ī±Cu > Ī±Co> Ī±Mn > Ī±Zn. Kinetic studies showed that it is rather the pre-exponential (entropic) factor and not the lowering of activation energy that justifies the order of activity of the solids. DFT calculations showed that the adsorption of CO on the Cu-doped CeO2 surface is more favorable (āˆ’16.63 eV), followed by Co, Mn, Zn (āˆ’14.46, āˆ’4.90, and āˆ’4.24 eV, respectively), and pure CeO2 (āˆ’0.63 eV). Also, copper compensates almost three times more charge (0.37e āˆ’) compared to Co and Mn, ca. 0.13e āˆ’ and 0.10e āˆ’, respectively, corroborating for its tendency to be reduced. Surface analysis (X-ray photoelectron spectroscopy), apart from the oxidation state of the elements, revealed a heteroatomā€“ceria surface interaction (Oa species) of different extents and of different populations of Oa species

    N2O decomposition over ceria-promoted Ir/Al2O3 catalysts: the role of ceria

    No full text
    Ī ĪµĻĪÆĪ»Ī·ĻˆĪ·: The impact of CeO2 in the Al2O3-20wt% CeO2 support prepared by the co-precipitation method on the Ir particle size, morphology and oxidation state, and in turn on the deN2O catalytic activity (1000ppmN2O) of supported Ir catalysts were investigated in the absence and presence of excess O2 (2vol%) conditions. It was demonstrated that the deN2O activity of Ir/Al2O3 is notably suppressed by the presence of oxygen in the feed stream, namely, the N2O conversion at 600Ā°C is declined to 65% in the presence of oxygen as compared to 100% in the absence of oxygen. A similar detrimental catalytic effect was also observed for the Ir/CeO2 solid. On the contrary, the deN2O performance of CeO2-modified Ir/Al2O3 catalyst is only slightly affected by the presence of oxygen. An extensive characterization study involving surface texture analysis (N2 adsorption-desorption at -196Ā°C), temperature-programmed reduction in H2 (H2-TPR), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), electron energy loss spectroscopy (EELS) and diffuse reflectance infrared Fourier transform spectroscopy of CO adsorption and desorption (CO-DRIFTS) was carried out to gain insight into the origin of the CeO2-induced promotional effect. The characterization results revealed the existence of IrO2 phase (H2-TPR, XRD, HRTEM, EELS and CO-DRIFTS) as well as of very small isolated particles of Ir on the Al2O3, CeO2 and CeO2-Al2O3 supports (STEM) but to a notably different extent. The coexistence of large IrO2 particles of perfect crystallite structure and very small Ir particles located at the Ir-ceria interface was revealed only in Ir/AlCe. The establishment of a certain IrĪ“+/Ī™r0 ratio and oxygen vacant sites (VO) concentration in ceria around very small Ir particles under oxidative reaction conditions seem to largely promote N2O adsorption and subsequent decomposition into N2 and O2 over the CeO2-promoted Ir/Al catalyst. In the case of Ir/Al, a different deN2O decomposition mechanism occurs, where the site reactivity of IrĪ“+/Ī™r0 established under oxidizing conditions is reduced significantly.Presented on: Applied Catalysis B: Environmenta
    corecore