1,198 research outputs found

    Double-diffusive instabilities of a shear-generated magnetic layer

    Get PDF
    Previous theoretical work has speculated about the existence of double-diffusive magnetic buoyancy instabilities of a dynamically evolving horizontal magnetic layer generated by the interaction of forced vertically sheared velocity and a background vertical magnetic field. Here we confirm numerically that if the ratio of the magnetic to thermal diffusivities is sufficiently low then such instabilities can indeed exist, even for high Richardson number shear flows. Magnetic buoyancy may therefore occur via this mechanism for parameters that are likely to be relevant to the solar tachocline, where regular magnetic buoyancy instabilities are unlikely.Comment: Submitted to ApJ

    Generation linewidth of an auto-oscillator with a nonlinear frequency shift: Spin-torque nano-oscillator

    Full text link
    It is shown that the generation linewidth of an auto-oscillator with a nonlinear frequency shift (i.e. an auto-oscillator in which frequency depends on the oscillation amplitude) is substantially larger than the linewidth of a conventional quasi-linear auto-oscillator due to the renormalization of the phase noise caused by the nonlinearity of the oscillation frequency. The developed theory, when applied to a spin-torque nano-contact auto-oscillator, predicts a minimum of the generation linewidth when the nano-contact is magnetized at a critical angle to its plane, corresponding to the minimum nonlinear frequency shift, in good agreement with recent experiments.Comment: 4 pages, 2 figure

    The Evolution of a Double Diffusive Magnetic Buoyancy Instability

    Get PDF
    Recently, Silvers, Vasil, Brummell, & Proctor (2009), using numerical simulations, confirmed the existence of a double diffusive magnetic buoyancy instability of a layer of horizontal magnetic field produced by the interaction of a shear velocity field with a weak vertical field. Here, we demonstrate the longer term nonlinear evolution of such an instability in the simulations. We find that a quasi two-dimensional interchange instability rides (or "surfs") on the growing shear-induced background downstream field gradients. The region of activity expands since three-dimensional perturbations remain unstable in the wake of this upward-moving activity front, and so the three-dimensional nature becomes more noticeable with time.Comment: 9 pages; 3 figures; accepted to appear in IAU symposium 27

    A nonlinear model for rotationally constrained convection with Ekman pumping

    Full text link
    It is a well established result of linear theory that the influence of differing mechanical boundary conditions, i.e., stress-free or no-slip, on the primary instability in rotating convection becomes asymptotically small in the limit of rapid rotation. This is accounted for by the diminishing impact of the viscous stresses exerted within Ekman boundary layers and the associated vertical momentum transport by Ekman pumping. By contrast, in the nonlinear regime recent experiments and supporting simulations are now providing evidence that the efficiency of heat transport remains strongly influenced by Ekman pumping in the rapidly rotating limit. In this paper, a reduced model is developed for the case of low Rossby number convection in a plane layer geometry with no-slip upper and lower boundaries held at fixed temperatures. A complete description of the dynamics requires the existence of three distinct regions within the fluid layer: a geostrophically balanced interior where fluid motions are predominately aligned with the axis of rotation, Ekman boundary layers immediately adjacent to the bounding plates, and thermal wind layers driven by Ekman pumping in between. The reduced model uses a classical Ekman pumping parameterization to alleviate the need for spatially resolving the Ekman boundary layers. Results are presented for both linear stability theory and a special class of nonlinear solutions described by a single horizontal spatial wavenumber. It is shown that Ekman pumping allows for significant enhancement in the heat transport relative to that observed in simulations with stress-free boundaries. Without the intermediate thermal wind layer the nonlinear feedback from Ekman pumping would be able to generate a heat transport that diverges to infinity. This layer arrests this blowup resulting in finite heat transport at a significantly enhanced value.Comment: 38 pages, 14 figure

    Study Of Oxidation Processes In Duck Meat With Application Of Rosemary And Grape Seed Extracts

    Get PDF
    The substantiation of the expedience of using antioxidants of a natural origin to decelerate oxidation processes in different meat products is an urgent direction of these studies. The prospective way of a solution of the problem of meat products oxidation spoilage is the use of vegetable extracts. The experimental studies of the effective use of the composition of rosemary and grape seed extracts in Peking duck forcemeat at the long storage were realized. Their influence on the dynamics of hydrolytic and peroxide oxidation of forcemeat lipids was studied. The analysis of oxidation secondary products accumulation was realized at the same time.The positive effect of the combined use of rosemary and grape seeds extracts on frozen Peking duck forcemeat was established, the optimal concentration of offered preparations was determined
    • …
    corecore