54 research outputs found

    Bio-Fabrication of Human Amniotic Membrane Zinc Oxide Nanoparticles and the Wet/Dry HAM Dressing Membrane for Wound Healing

    Get PDF
    Publication history: Accepted - 25 June 2021; Published online - 28 July 2021.The preparation of unique wet and dry wound dressing products derived from unprocessed human amniotic membrane (UP-HAM) is described. The UP-HAM was decellularized, and the constituent proteins were cross-linked and stabilized before being trimmed and packed in sterile Nucril-coated laminated aluminium foil pouches with isopropyl alcohol to manufacture processed wet human amniotic membrane (PWHAM). The dry type of PD-HAM was prepared by decellularizing the membrane, UV irradiating it, lyophilizing/freeze-drying it, sterilizing it, and storing it at room temperature. The UP-HAM consists of a translucent yellowish mass of flexible membranes with an average thickness of 42 µm. PW-HAM wound dressings that had been processed, decellularized, and dehydrated had a thinner average thickness of 30 µm and lacked nuclear-cellular structures. Following successful decellularization, discrete bundle of fibrous components in the stromal spongy layers, microvilli and reticular ridges were still evident on the surface of the processed HAM, possibly representing the location of the cells that had been removed by the decellularization process. Both wet and dry HAM wound dressings are durable, portable, have a shelf life of 3–5 years, and are available all year. A slice of HAM dressing costs 1.0 US/cm2 . Automation and large-scale HAM membrane preparation, as well as storage and transportation of the dressings, can all help to establish advanced technologies, improve the efficiency of membrane production, and reduce costs. Successful treatment of wounds to the cornea of the eye was achieved with the application of the HAM wound dressings. The HAM protein analysis revealed 360 µg proteins per gram of tissue, divided into three main fractions with MWs of 100 kDa, 70 kDa, and 14 kDa, as well as seven minor proteins, with the 14 kDa protein displaying antibacterial properties against human pathogenic bacteria. Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 July 2021 | Volume 9 | Article 695710 fbioe-09-695710 July 22, 2021 Time: 16:39 # 2 Ramasamy et al. HAMP-ZnO Nanoparticles HAM Wound Dressing Wet and dry wound dressings were produced. HAM proteins were purified and analysed. The zinc oxide nanoparticles (HAMP-ZnO NP) made from HAM proteins were characterised and tested for their antibacterial activity. Wounds to the cornea of the eye healed easily when treated with HAM wound dressings. Fresh human Amniotic membrane, Serological screening, selection of disease-free HAM, reome stromal layer, preparation of HAM. UNPROCESSED HAM Cuboidal epithelial cells, basement membrane, compact layer, stromal and spongy layers containing scatted fibroblast cells are visible in hsitological analysis. The flow chart depicts the methods for processing, and preparation of wet (PWHAM) and dry (PD-HAM) wound healing dressings. HAM proteins, Nanoparticle synthesis (HAMP-ZnO NP) and analysis. Antibacterial analysis show Inhibition of growth and biofilm formation of pathogenic bacteria . Processed HAM lacked a nuclear-cellular epithelium, but it did have a distinct fibrous elements in basement membrane, stromal and spongy layers. Processed PW-HAM (Light &SEM) showed smooth epithelial surface topography with microvilli,. HAM dressing, wet/dry, packed, labelled, sterilised and processed. They are durable, portable, have long shelf life . A slice of HAM dressing costs US 1.0 / cm² . The wound dressings are ready to be applied. The dermal wounds and conjunctival surface can be successfully repaired using processed HAM wound dressings GRAPHICAL ABSTRACT | Flow chart depicting the methods, preparing, and characterizing, by histological, and scanning electron microscopy, of wet (PW-HAM) and dry (PD-HAM)of wound healing dressing, and preparation of nanoparticles (HAMP ZnO NP); and application of HAM wound dressing. A wide range of antibacterial activity was observed after treatment with 75 µg/ml zinc oxide nanoparticles derived from human amniotic membrane proteins (HAMP-ZnO NP), including dose-dependent biofilm inhibition and inhibition of Gram-positive (S. aureus, S. mutans, E. faecalis, and L. fusiformis) and Gram-negative bacteria (S. sonnei, P. aeruginosa, P. vulgaris, and C. freundii).PR has acknowledged Sree Balaji Medical College and Hospital for providing the article processing charges of the journal, and moral and technical support. The support of Cologenesis Health Care Pvt. Ltd. for a study on “Human amniotic membrane for ocular and dermal applications” is sincerely appreciated

    Green-synthesized CdS nano-pesticides: toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata

    Get PDF
    Currently, nano-formulated mosquito larvicides have been widely proposed to control young instars of malaria vector populations. However, the fate of nanoparticles in the aquatic environment is scarcely known, with special reference to the impact of nanoparticles on enzymatic activity of non-target aquatic invertebrates. In this study, we synthesized CdS nanoparticles using a green protocol relying on the cheap extract of Valoniopsis pachynema algae. CdS nanoparticles showed high toxicity on young instars of the malaria vectors Anopheles stephensiand A. sundaicus. The antimalarial activity of the nano-synthesized product against chloroquine-resistant (CQ-r) Plasmodium falciparumparasites was investigated. From a non-target perspective, we focused on the impact of this novel nano-pesticide on antioxidant enzymes acetylcholinesterase (AChE) and glutathione S-transferase (GST) activities of the mud crab Scylla serrata. The characterization of nanomaterials was carried out by UV–vis and FTIR spectroscopy, as well as SEM and XRD analyses. In mosquitocidal assays, LC50 of V. pachynema-synthesized CdS nanoparticles on A. stephensi ranged from 16.856 (larva I), to 30.301 μg/ml (pupa), while for An. sundaicus they ranged from 13.584 to 22.496 μg/ml. The antiplasmodial activity of V. pachynema extract and CdS nanoparticles was evaluated against CQ-r and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of V. pachynema extract was 58.1 μg/ml (CQ-s) and 71.46 μg/ml (CQ-r), while nano-CdS IC50 was 76.14 μg/ml (CQ-s) and 89.21 μg/ml (CQ-r). In enzymatic assays, S. serrata crabs were exposed to sub-lethal concentrations, i.e. 4, 6 and 8 μg/ml of CdS nanoparticles, assessing changes in GST and AChE activity after 16 days. We observed significantly higher activity of GST, if compared to the control, during the whole experiment period. In addition, a single treatment with CdS nanoparticles led to a significant decrease in AChE activity over time. The toxicity of CdS nanoparticles and Cd ions in aqueous solution was also assessed in mud crabs, showing higher toxicity of aqueous Cd ions if compared to nano-CdS. Overall, our results underlined the efficacy of green-synthesized CdS nanoparticles in malaria vector control, outlining also significant impacts on the enzymatic activity of non-target aquatic organisms, with special reference to mud crabs

    Prophenoloxidase and Immune Indices of Indian White Shrimp Fenneropenaeus Indicus

    No full text
    International audienc

    Enzymatic elucidation of haemocyanin from Kuruma shrimp <i>Marsupenaeus japonicus</i> and its molecular recognition mechanism towards pathogens

    No full text
    <div><p>Haemocyanin is an important non-specific immune protein present in the hemolymph of invertebrates, which have the ability to recognize the microbial pathogens and trigger the innate immune system. In this study, we isolated and purified the haemocyanin using gel filtration chromatography and investigated its microbial recognition mechanism against the invading pathogens. Kuruma shrimp <i>Marsupenaeus japonicus</i> haemocyanin showed the single band with a molecular weight of 76 kDa on SDS-PAGE and its molecular mass was analysed through the MALDI. Pathogen recognition mechanism of <i>M. japonicus</i> haemocyanin was detected through bacterial agglutination, agglutination inhibition and prophenoloxidase activity. <i>M. japonicus</i> haemocyanin agglutinate all human blood RBC types and showed the bacterial agglutination against all tested Gram positive <i>Staphylococcus aureus, Enterococcus faecalis</i> and <i>Bacillus subtilis</i> and Gram negative <i>Pseudomonas aeruginosa</i>, <i>Proteus vulgaris</i> and <i>Vibrio parahaemolyticus</i> at the concentrations ranging from 30 to 50 μg/ml. Agglutination was inhibited by 50–200 mM of N-acetylneuraminic acid, a-D-glucose, D-galactose and D-xylose. Our results suggest that, 76 kDa subunit of <i>M. japonicus</i> haemocyanin recognize the pathogenic surface proteins which are present on the outer membrane of the bacteria and mediates the bacterial agglutination through haemocytes. This bacterial agglutination was visualized through Confocal Laser Scanning Microscopy (CLSM). This present study would be helpful to explore the importance of haemocyanin in innate immune response of <i>M. japonicus</i> and its eliciting pathogen recognition mechanism leads to the development of innate immunity in crustaceans.</p></div

    In Vitro

    No full text

    Bacterial Disease Control Methods in Shrimp (<em>Penaeus,</em> 1798) Farming Sector in Asian Countries

    No full text
    Aquaculture industry produces the enormous amount of sea foods (fish, shrimp, planktons, etc.) with enriched quantity of proteins, essential amino acids, essential fatty acids, and micronutrients and also possesses the medicinal values. This production industry is very important to meet out the need of the global population. Recently, different culture practices for aquatic culturing organisms were developed in practices, where the risk of infection and diseases outbreak also increased which leads to the production loss to the aquatic sector. Several conventional methods are used to prevent the diseases probiotics, antibiotics, plants, immmunostimulants, proteins, immune proteins enhancement, nanoparticles, etc. At the same time, these treatment techniques also have merits and demerits to execute into the practical platform. For instance, chemical or antibiotics treatment into the culture system leads to the some adverse effects in culturing organisms, environment, and also consumer. In this chapter, various diseases caused by the bacterial strains and its control strategies in the shrimp farming industry to enhance the aquaculture are discussed

    Molecular identification and structural characterization of marine endophytic actinomycetes Nocardiopsis sp. GRG 2 (KT 235641) and its antibacterial efficacy against isolated ESBL producing bacteria

    No full text
    © 2018 Elsevier LtdThe present study was designed to identify the potential bioactive compound from endophytic actinomycetes (EA) Nocardiopsis sp. GRG 2 (KT 235641) against selected extended spectrum beta lactamase (ESBL) producing Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumoniae (K. pneumoniae). Initially, the multi drug resistance (MDR) effect of selected uropathogens was confirmed by respective UTI panel of Hexa antibiotics disc methods. The zone of inhibition ≤22 mm for ceftazidime, ≤ 27 mm for cefotaxime and ≤8 mm zone of MIC stripe against both the uropathogens of phenotypic methods confirmed, the selected strains were ESBL producer. Among the various EA extracts, GRG 2 extract showed excellent antibacterial activity against both ESBL producing P. aeruginosa and K. pneumonia by agar well diffution method. The molecular identification of selected GRG 2 strain was named as Nocardiopsis sp. GRG 2 (KT235641). The antibacterial metabolites present in the TLC elution w
    corecore