42 research outputs found

    Differences at brain SPECT between depressed females with and without adult ADHD and healthy controls: etiological considerations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comorbidity between Attention Deficit Hyperactivity Disorder (ADHD) and mood disorders is common. Alterations of the cerebellum and frontal regions have been reported in neuro-imaging studies of ADHD and major depression.</p> <p>Methods</p> <p>Thirty chronically depressed adult females of whom 16 had scores below, and 14 scores above, cut-offs on the 25-items Wender Utah Retrospective Scale (WURS-25) and the Wender-Reimherr Adult Attention Deficit Disorder Scale (WRAADDS) were divided into subgroups designated "Depression" and "Depression + ADHD", respectively. Twenty-one of the patients had some audiological symptom, tinnitus and/or hearing impairment. The patients were investigated with other rating scales and <sup>99m</sup>Tc-HMPAO SPECT. Controls for <sup>99m</sup>Tc-HMPAO SPECT were 16 healthy females. SPECT was analyzed by both statistical parametric mapping (SPM2) and the computerized brain atlas (CBA). Discriminant analysis was performed on the volumes of interest generated by the CBA, and on the scores from rating scales with the highest group differences.</p> <p>Results</p> <p>The mean score of a depression rating scale (MADRS-S) was significantly lower in the "Depression" subgroup compared to in the "Depression + ADHD" subgroup. There was significantly decreased tracer uptake within the bilateral cerebellum at both SPM and CBA in the "Depression + ADHD" subgroup compared to in the controls. No decrease of cerebellar tracer uptake was observed in "Depression". Significantly increased tracer uptake was found at SPM within some bilateral frontal regions (Brodmann areas 8, 9, 10, 32) in the "Depression + ADHD" subgroup compared to in "Depression". An accuracy of 100% was obtained for the discrimination between the patient groups when thalamic uptake was used in the analysis along with scores from Socialization and Impulsivity scales.</p> <p>Conclusion</p> <p>The findings confirm the previous observation of a cerebellar involvement in ADHD. Higher bilateral frontal <sup>99m</sup>Tc-HMPAO uptake in "Depression + ADHD" compared to in "Depression" indicate a difference between these subgroups. <sup>99m</sup>Tc-HMPAO uptake mechanisms are discussed.</p

    Dopaminergic Neuronal Imaging in Genetic Parkinson's Disease: Insights into Pathogenesis

    Get PDF
    Objectives:To compare the dopaminergic neuronal imaging features of different subtypes of genetic Parkinson's Disease.Methods:A retrospective study of genetic Parkinson's diseases cases in which DaTSCAN (123I-FP-CIT) had been performed. Specific non-displaceable binding was calculated for bilateral caudate and putamen for each case. The right:left asymmetry index and striatal asymmetry index was calculated.Results:Scans were available from 37 cases of monogenetic Parkinson's disease (7 glucocerebrosidase (GBA) mutations, 8 alpha-synuclein, 3 LRRK2, 7 PINK1, 12 Parkin). The asymmetry of radioligand uptake for Parkinson's disease with GBA or LRRK2 mutations was greater than that for Parkinson's disease with alpha synuclein, PINK1 or Parkin mutations.Conclusions:The asymmetry of radioligand uptake in Parkinsons disease associated with GBA or LRRK2 mutations suggests that interactions with additional genetic or environmental factors may be associated with dopaminergic neuronal loss

    Glia Imaging Differentiates Multiple System Atrophy from Parkinson's Disease: A Positron Emission Tomography Study with [C-11]PBR28 and Machine Learning Analysis

    Get PDF
    Background The clinical diagnosis of multiple system atrophy (MSA) is challenged by overlapping features with Parkinson's disease (PD) and late-onset ataxias. Additional biomarkers are needed to confirm MSA and to advance the understanding of pathophysiology. Positron emission tomography (PET) imaging of the translocator protein (TSPO), expressed by glia cells, has shown elevations in MSA. Objective In this multicenter PET study, we assess the performance of TSPO imaging as a diagnostic marker for MSA.Methods We analyzed [C-11]PBR28 binding to TSPO using imaging data of 66 patients with MSA and 24 patients with PD. Group comparisons were based on regional analysis of parametric images. The diagnostic readout included visual reading of PET images against clinical diagnosis and machine learning analyses. Sensitivity, specificity, and receiver operating curves were used to discriminate MSA from PD and cerebellar from parkinsonian variant MSA. Results We observed a conspicuous pattern of elevated regional [C-11]PBR28 binding to TSPO in MSA as compared with PD, with "hotspots" in the lentiform nucleus and cerebellar white matter. Visual reading discriminated MSA from PD with 100% specificity and 83% sensitivity. The machine learning approach improved sensitivity to 96%. We identified MSA subtype-specific TSPO binding patterns. Conclusions We found a pattern of significantly increased regional glial TSPO binding in patients with MSA. Intriguingly, our data are in line with severe neuroinflammation in MSA. Glia imaging may have potential to support clinical MSA diagnosis and patient stratification in clinical trials on novel drug therapies for an alpha-synucleinopathy that remains strikingly incurable. </p

    Consensus Paper: Radiological Biomarkers of Cerebellar Diseases

    Get PDF
    Hereditary and sporadic cerebellar ataxias represent a vast and still growing group of diseases whose diagnosis and differentiation cannot only rely on clinical evaluation. Brain imaging including magnetic resonance (MR) and nuclear medicine techniques allows for characterization of structural and functional abnormalities underlying symptomatic ataxias. These methods thus constitute a potential source of radiological biomarkers, which could be used to identify these diseases and differentiate subgroups of them, and to assess their severity and their evolution. Such biomarkers mainly comprise qualitative and quantitative data obtained from MR including proton spectroscopy, diffusion imaging, tractography, voxel-based morphometry, functional imaging during task execution or in a resting state, and from SPETC and PET with several radiotracers. In the current article, we aim to illustrate briefly some applications of these neuroimaging tools to evaluation of cerebellar disorders such as inherited cerebellar ataxia, fetal developmental malformations, and immune-mediated cerebellar diseases and of neurodegenerative or early-developing diseases, such as dementia and autism in which cerebellar involvement is an emerging feature. Although these radiological biomarkers appear promising and helpful to better understand ataxia-related anatomical and physiological impairments, to date, very few of them have turned out to be specific for a given ataxia with atrophy of the cerebellar system being the main and the most usual alteration being observed. Consequently, much remains to be done to establish sensitivity, specificity, and reproducibility of available MR and nuclear medicine features as diagnostic, progression and surrogate biomarkers in clinical routine

    Guidelines to PET measurements of the target occupancy in the brain for drug development

    Get PDF
    This guideline summarizes the current view of the European Association of Nuclear Medicine Drug Development Committee. The purpose of this guideline is to guarantee a high standard of PET studies that are aimed at measuring target occupancy in the brain within the framework of development programs of drugs that act within the central nervous system (CNS drugs). This guideline is intended to present information specifically adapted to European practice. The information provided should be applied within the context of local conditions and regulations
    corecore