3,105 research outputs found

    Numerical Simulation of Nano Scanning in Intermittent-Contact Mode AFM under Q control

    Full text link
    We investigate nano scanning in tapping mode atomic force microscopy (AFM) under quality (Q) control via numerical simulations performed in SIMULINK. We focus on the simulation of whole scan process rather than the simulation of cantilever dynamics and the force interactions between the probe tip and the surface alone, as in most of the earlier numerical studies. This enables us to quantify the scan performance under Q control for different scan settings. Using the numerical simulations, we first investigate the effect of elastic modulus of sample (relative to the substrate surface) and probe stiffness on the scan results. Our numerical simulations show that scanning in attractive regime using soft cantilevers with high Qeff results in a better image quality. We, then demonstrate the trade-off in setting the effective Q factor (Qeff) of the probe in Q control: low values of Qeff cause an increase in tapping forces while higher ones limit the maximum achievable scan speed due to the slow response of the cantilever to the rapid changes in surface profile. Finally, we show that it is possible to achieve higher scan speeds without causing an increase in the tapping forces using adaptive Q control (AQC), in which the Q factor of the probe is changed instantaneously depending on the magnitude of the error signal in oscillation amplitude. The scan performance of AQC is quantitatively compared to that of standard Q control using iso-error curves obtained from numerical simulations first and then the results are validated through scan experiments performed using a physical set-up

    Biochar for Climate Change Mitigation: Tracing the in-situ Priming Effect on a Forest Site

    Get PDF
    AbstractA significant amount of Carbon (C) on global soils consists of black carbon or charred organic matter. Biochar amendment in soils is therefore seen as a potential geoengineering method for climate change mitigation and adaptation. We tested the effects of biochar amendment (10 t.ha-1) on soil respiration trace a potential priming effect until 15 months after amendment. Our results indicate that after a short period of initially weak positive priming, there was no significant difference between control and biochar plots during the entire project duration. From a carbon sequestration point of view, it can be concluded, that biochar amendment leads to higher stable C stocks in the organic horizon

    Absolute properties of the binary system BB pegasi

    Get PDF
    We present ground-based photometry of the low-temperature contact binary BB Peg. We collected all the times of mid-eclipse available in the literature and combined them with those obtained in this study. Analyses of the data indicate a period increase of (3.0 ± 0.1) × 10-8 days yr -1. This period increase of BB Peg can be interpreted in terms of the mass transfer 2.4 × 10-8 M⊙ yr-1 from the less massive to the more massive component. The physical parameters have been determined as Mc = 1.42M⊙, Mh = 0.53 M⊙, Rc = 1.29 R⊙, Rh, = 0.83 R⊙, Lc = 1.86 L⊙, and L h = 0.94 L⊙ through simultaneous solutions of light and of the radial velocity curves. The orbital parameters of the third body, which orbits the contact system in an eccentric orbit, were obtained from the period variation analysis. The system is compared to the similar binaries in the Hertzsprung-Russell and mass-radius diagrams.Ege University Research Fund and TÜBİTAK National Observator

    The effect of racemic gossypol and AT-101 on angiogenic profile of OVCAR-3 cells: a preliminary molecular framework for gossypol enantiomers

    No full text
    To compare the effect of racemic gossypol with its (–)/(–) enantiomer (AT-101) on expression profiles of angiogenic molecules by mRNA levels in human ovarian cancer cell line OVCAR-3. Methods: Cell viability assay (2,3-bis (2-methoxy-4-nitro-5- sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide) was used to detect cytotoxicity of gossypol enantiomers. DNA fragmentation by an enzyme-linked immunosorbent (ELISA) assay was used to evaluate the rate of apoptosis. The mRNA expression levels of angiogenic molecules were investigated by Human Angiogenesis RT2 ProfilerTM PCR Array (SuperArray, Frederick, MD). Results: Both racemic form and AT-101 resulted in a significant cytotoxicity and induced apoptosis. This effect was observed in a dose- and time dependent manner. However, AT-101 was much more potent. In addition, the treatment of 10 μM of racemic gossypol alone and 3 μM of AT-101 alone resulted in significant down-regulation (≥ 3 fold) in mRNA levels of some pivotal angiogenic molecules in OVCAR-3, but altered gene profiles were different by the treatment of each enantiomer. Conclusion: The efficacy of two gossypol enantiomers in OVCAR-3 cells showed distinction. AT-101 was much more potent than racemic gossypol, not only by means of cell death and apoptosis, but also by modulation of angiogenic molecules released from OVCAR-3 cells. Further studies with endothelial cells should be done to verify the anti-angiogenic effect of gossypol enantiomers in cancer treatment

    Asynchronous Interaction Aggregation for Action Detection

    Full text link
    Understanding interaction is an essential part of video action detection. We propose the Asynchronous Interaction Aggregation network (AIA) that leverages different interactions to boost action detection. There are two key designs in it: one is the Interaction Aggregation structure (IA) adopting a uniform paradigm to model and integrate multiple types of interaction; the other is the Asynchronous Memory Update algorithm (AMU) that enables us to achieve better performance by modeling very long-term interaction dynamically without huge computation cost. We provide empirical evidence to show that our network can gain notable accuracy from the integrative interactions and is easy to train end-to-end. Our method reports the new state-of-the-art performance on AVA dataset, with 3.7 mAP gain (12.6% relative improvement) on validation split comparing to our strong baseline. The results on dataset UCF101-24 and EPIC-Kitchens further illustrate the effectiveness of our approach. Source code will be made public at: https://github.com/MVIG-SJTU/AlphAction

    A ONE DIMENSIONAL MATHEMATICAL MODEL FOR URODYNAMICS

    Get PDF
    ABSTRACT Millions of people in the world suffer from urinary incontinence and overactive bladder with the major causes for the symptoms being stress, urge, overflow and functional incontinence. For a more effective treatment of these ailments, a detailed understanding of the urinary flow dynamics is required. This challenging task is not easy to achieve due to the complexity of the problem and the lack of tools to study the underlying mechanisms of the urination process. Theoretical models can help find a better solution for the various disorders of the lower urinary tract, including urinary incontinence, through simulating the interaction between various components involved in the continence mechanism. Using a lumped parameter analysis, a one-dimensional, transient mathematical model was built to simulate a complete cycle of filling and voiding of the bladder. Both the voluntary and involuntary contraction of the bladder walls is modeled along with the transient response of both the internal and external sphincters which dynamically control the urination process. The model also includes the effects signals from the bladder outlet (urethral sphincter, pelvic floor muscles and fascia), the muscles involved in evacuation of the urinary bladder (detrusor muscle) as well as the abdominal wall musculature. The necessary geometrical parameters of the urodynamics model were obtained from the 3D visualization data based on the visible human project. Preliminary results show good agreement with the experimental results found in the literature. The current model could be used as a diagnostic tool for detecting incontinence and simulating possible scenarios for the circumstances leading to incontinence. INTRODUCTION Urinary incontinence has been reported to affect 35% of American women over 50 years of age an almost 15% who have leakage on a daily basi

    Nanoparticle amount, and not size, determines chain alignment and nonlinear hardening in polymer nanocomposites

    Get PDF
    Polymer nanocomposites-materials in which a polymer matrix is blended with nanoparticles (or fillers)-strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently.This work is part of the research programme “Understanding the viscoelasticity of elastomer based nanocomposites” of the Stichting voor Fundamenteel Onderzoek der Materie, which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek

    To respond or not to respond - a personal perspective of intestinal tolerance

    Get PDF
    For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research
    corecore