407 research outputs found

    Amylose in Neurospora.

    Get PDF
    Amylose in Neurospora

    Maternal health services in South Africa During the 10th anniversary of the WHO 'Safe Motherhood' initiative

    Get PDF
    The tenth anniversary of the World Health Organisation's 'Safe Motherhood' initiative is being celebrated this year and the organisation is using the opportunity to assess critically its gains, its strengths and its weaknesses. South Africa has taken some bold steps to address maternal health services, specifically introducing free health care for pregnant women and children under 5. In this paper we explore what further steps are necessary to ensure improved health outcome for pregnant women. South African health care administrations are, in some cases, engaged in broad health systems interventions at provincial level. This approach to improving health services is nonetheless frustrated by programme-specific initiatives, such as the introduction of female condoms or other piecemeal additions. We argue that making the systems function is the essential, primary step in the success of any intervention. The case of maternal health is explored in this paper

    Dynamic variability of the phytoplankton electron requirement for carbon fixation in eastern Australian waters

    Full text link
    © 2019 Elsevier B.V. Fast Repetition Rate fluorometry (FRRf) generates high-resolution measures of phytoplankton primary productivity as electron transport rates (ETRs). How ETRs scale to corresponding inorganic carbon (C) uptake rates (the so-called electron requirement for carbon fixation, Φe,C), inherently describes the extent and effectiveness with which absorbed light energy drives C-fixation. However, it remains unclear whether and how Φe,C follows predictable patterns for oceanographic datasets spanning physically dynamic, and complex, environmental gradients. We utilise a unique high-throughput approach, coupling ETRs and 14C-incubations to produce a semi-continuous dataset of Φe,C (n = 80), predominantly from surface waters, along the Australian coast (Brisbane to the Tasman Sea), including the East Australian Current (EAC). Environmental conditions along this transect could be generally grouped into cooler, more nutrient-rich waters dominated by larger size-fractionated Chl-a (>10 μm) versus warmer nutrient-poorer waters dominated by smaller size-fractionated Chl-a (<2 μm). Whilst Φe,C was higher for warmer water samples, environmental conditions alone explained <20% variance of Φe,C, and changes in predominant size-fraction(s) distributions of Chl-a (biomass) failed to explain variance of Φe,C. Instead, normalised Stern-Volmer non-photochemical quenching (NPQNSV = F0′/Fv′) was a better predictor of Φe,C, explaining ~55% of observed variability. NPQNSV is a physiological descriptor that accounts for changes in both long-term driven acclimation in non-radiative decay, and quasi-instantaneous PSII downregulation, and thus may prove a useful predictor of Φe,C across physically-dynamic regimes, provided the slope describing their relationship is predictable. We also consider recent advances in fluorescence-based corrections to evaluate the potential role of baseline fluorescence (Fb) in contributing to overestimation of Φe,C and the correlation between Φe,C and NPQNSV – in doing so, we highlight the need for Fb corrections for future field-based assessments of Φe,C

    Taxonomic variability in the electron requirement for carbon fixation across marine phytoplankton.

    Full text link
    Fast Repetition Rate fluorometry (FRRf) has been increasingly used to measure marine primary productivity by oceanographers to understand how carbon (C) uptake patterns vary over space and time in the global oceans. As FRRf measures electron transport rates through photosystem II (ETRPSII ), a critical, but difficult-to-predict conversion factor termed the "electron requirement for carbon fixation" (Φe,C ) is needed to scale ETRPSII to C-fixation rates. Recent studies have generally focused on understanding environmental regulation of Φe,C , while taxonomic control has been explored by only a handful of laboratory studies encompassing a limited diversity of phytoplankton species. We therefore assessed Φe,C for a wide range of marine phytoplankton (n=17 strains) spanning multiple taxonomic and size-classes. Data mined from previous studies were further considered to determine whether Φe,C variability could be explained by taxonomy versus other phenotypic traits influencing growth and physiological performance (e.g., cell size). We found that Φe,C exhibited considerable variability (~4-10 mol e- · [mol C]-1 ), and was negatively correlated with growth rate (R2 = 0.7, p < 0.01). Diatoms exhibited a lower Φe,C compared to chlorophytes during steady-state, nutrient-replete growth. Inclusion of meta-analysis data did not find significant relationships between Φe,C and class, or growth rate, although confounding factors inherent to methodological inconsistencies between studies likely contributed to this. Knowledge of empirical relationships between Φe,C and growth rate coupled with recent improvements in quantifying phytoplankton growth rates in-situ, facilitate up-scaling of FRRf campaigns to routinely derive Φe,C needed to assess ocean C-cycling

    Impact of nitrogen availability upon the electron requirement for carbon fixation in Australian coastal phytoplankton communities

    Full text link
    © 2018 Association for the Sciences of Limnology and Oceanography Nitrogen (N) availability affects phytoplankton photosynthetic performance and regulates marine primary production (MPP) across the global coast and oceans. Bio-optical tools including Fast Repetition Rate fluorometry (FRRf) are particularly well suited to examine MPP variability in coastal regions subjected to dynamic spatio-temporal fluctuations in nutrient availability. FRRf determines photosynthesis as an electron transport rate through Photosystem II (ETRPSII), requiring knowledge of an additional parameter, the electron requirement for carbon fixation (KC), to retrieve rates of CO2-fixation. KC strongly depends upon environmental conditions regulating photosynthesis, yet the importance of N-availability to this parameter has not been examined. Here, we use nutrient bioassays to isolate how N (relative to other macronutrients P, Si) regulates KC of phytoplankton communities from the Australian coast during summer, when N-availability is often highly variable. KC consistently responded to N-amendment, exhibiting up to a threefold reduction and hence an apparent increase in the efficiency with which electrons were used to drive C-fixation. However, the process driving this consistent reduction was dependent upon initial conditions. When diatoms dominated assemblages and N was undetectable (e.g., post bloom), KC decreased predominantly via a physiological adjustment of the existing community to N-amendment. Conversely, for mixed assemblages, N-addition achieved a similar reduction in KC through a change in community structure toward diatom domination. We generate new understanding and parameterization of KC that is particularly critical to advance how FRRf can be applied to examine C-uptake throughout the global ocean where nitrogen availability is highly variable and thus frequently limits primary productivity

    Functional characterisation of substrate-binding proteins to address nutrient uptake in marine picocyanobacteria.

    Full text link
    Marine cyanobacteria are key primary producers, contributing significantly to the microbial food web and biogeochemical cycles by releasing and importing many essential nutrients cycled through the environment. A subgroup of these, the picocyanobacteria (Synechococcus and Prochlorococcus), have colonised almost all marine ecosystems, covering a range of distinct light and temperature conditions, and nutrient profiles. The intra-clade diversities displayed by this monophyletic branch of cyanobacteria is indicative of their success across a broad range of environments. Part of this diversity is due to nutrient acquisition mechanisms, such as the use of high-affinity ATP-binding cassette (ABC) transporters to competitively acquire nutrients, particularly in oligotrophic (nutrient scarce) marine environments. The specificity of nutrient uptake in ABC transporters is primarily determined by the peripheral substrate-binding protein (SBP), a receptor protein that mediates ligand recognition and initiates translocation into the cell. The recent availability of large numbers of sequenced picocyanobacterial genomes indicates both Synechococcus and Prochlorococcus apportion >50% of their transport capacity to ABC transport systems. However, the low degree of sequence homology among the SBP family limits the reliability of functional assignments using sequence annotation and prediction tools. This review highlights the use of known SBP structural representatives for the uptake of key nutrient classes by cyanobacteria to compare with predicted SBP functionalities within sequenced marine picocyanobacteria genomes. This review shows the broad range of conserved biochemical functions of picocyanobacteria and the range of novel and hypothetical ABC transport systems that require further functional characterisation

    Data review for 3LN redfish in preparation for an updated management strategy evaluation

    Get PDF
    Data review for 3LN redfish in preparation for an updated management strategy evaluationVersión del editor

    A comparison of clinical outcomes between vaccinated and vaccine-naive patients of COVID-19, in four tertiary care hospitals of Kerala, South India

    Get PDF
    The problem considered: This multi-centric study analyzed data of COVID-19 patients and compared differences in symptomatology, management, and outcomes between vaccinated and vaccine-naive patients. Methods: All COVID-19 positive individuals treated as an in-or out-patient from the 1stMarch to 15th May 2021 in four selected study sites were considered for the study. Treatment details, symptoms, and clinical course were obtained from hospital records. Chi-square was used to test the association of socio-demographic and treatment variables with the vaccination status and binary logistic regression were used to obtain the odds ratio with a 95% confidence interval. Results: The analysis was of 1446 patients after exclusion of 156 with missing data of which males were 57.3% and females 42.7%. 346 were vaccinated; 189 received one dose and 157 both doses. Hospitalization was more in vaccinated (38.2% vs 27.4%); ICU admissions were less in vaccinated (3.5% vs 7.1%). More vaccinated were symptomatic (OR = 1.5); half less likely to be on non-invasive ventilation (OR = 0.5) while vaccine naive patients had 4.21 times the risk of death. Conclusion: Severe infection, duration of hospital stays, need for ventilation and death were significantly less among vaccinated when compared with vaccine naive patients
    corecore